Содержание

Оксид — это… Что такое Оксид?

Окси́д (о́кисел, о́кись) — соединение химического элемента с кислородом, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF2.

Оксиды — весьма распространенный тип соединений, содержащихся в земной коре и во вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Окислами называется класс минералов, представляющих собой соединения металла с кислородом (см. Категория:Окислы).

Соединения, содержащие атомы кислорода, соединённые между собой, называются пероксидами (перекисями) и супероксидами. Они не относятся к категории оксидов.

Классификация

В зависимости от химических свойств различают:

Номенклатура

В соответствии с номенклатурой ИЮПАК, оксиды называют словом «оксид», после которого следует наименование химического элемента в родительном падеже, например: Na2O — оксид натрия, Al2O3 — оксид алюминия. Если элемент образует несколько оксидов, то в их названиях указывается его степень окисления римской цифрой в скобках сразу после названия (без пробела). Например, Cu2О — оксид меди(I), CuO — оксид меди(II), FeO — оксид железа(II), Fe2О3 — оксид железа(III), Cl2O7 — оксид хлора(VII).

Часто используют и другие наименования оксидов по числу атомов кислорода: если оксид содержит только один атом кислорода, то его называют монооксидом, моноокисью или закисью, если два — диоксидом или двуокисью, если три — то триоксидом или триокисью и т. д. Например: монооксид углерода CO, диоксид углерода СО2, триоксид серы SO3.

Также распостранены исторически сложившиеся (тривиальные) названия оксидов, например угарный газ CO, серный ангидрид SO3 и т. д.

Химические свойства: Основные оксиды.

1. Основный оксид + кислота = соль + вода

CuO + H2SO4 = CuSO4 + H2O

Примечание:кислота ортофосфорная или сильная.

2. Сильноосновный оксид + вода = щелочь

CaO + H2O = Ca(OH)2

3. Сильноосновный оксид + кислотный оксид = соль

CaO + Mn2O7 = Ca(MnO4)2

Na2O + CO2 = Na2СO3

4. Основный оксид + водород = металл + вода

CuO + H2 = Cu + H2O

Примечание: металл менее активный, чем алюминий.

Химические свойства: Кислотные оксиды.

1. Кислотный оксид + вода = кислота

SO3 + H2O = H2SO4

Некоторые оксиды, например SiO2, с водой не реагируют, поэтому их кислоты получают косвенным.

2. Кислотный оксид + основной оксид = соль

CO2 + CaO = CaCO3

3. Кислотный оксид + основание = соль + вода

SO2 + 2NaOH = Na2SO3 + H2O

Если кислотный оксид является ангидридом многоосновной кислоты, возможно образование кислых или средних солей:

Ca(OH)2 + CO2 = CaCO3↓ + H2O

CaCO3 + CO2 + H2O = Ca(HCO3)2

4. Нелетучий оксид + соль1 = соль2 + летучий оксид

SiO2 + Na2CO3 = Na2SiO3 + CO2

Химические свойства: Амфотерные оксиды.

При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства:

ZnO + 2HCl = ZnCl2 + H2O

При взаимодействии с сильным основанием или основным оксидом проявляют кислотные свойства:

ZnO + 2KOH + H2O = K2[Zn(OH)4)]  (в водном растворе)

ZnO + CaO = CaZnO2  (при сплавлении)

Получение оксидов

1. Взаимодействие простых веществ (за исключением инертных газов, золота и платины) с кислородом:

2H2 + O2 = 2H2O

2Сu + O2 = 2СuO

При горении в кислороде щелочных металлов (кроме лития), а также стронция и бария образуются пероксиды и надпероксиды:

2Na + O2 = Na2O2

K + O2 = KO2

2. Обжиг или горение бинарных соединений в кислороде:

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

CS2 + 3O2 = CO2 + 2SO2

2PH3 + 4O2 = P2O5 + 3H2O

3. Термическое разложение солей:

CaCO3 = CaO + CO2

2FeSO4 = Fe2O3 + SO2↑ + SO3

4. Термическое разложение оснований или кислот:

2Al(OH)3 = Al2O3 + 3H2O↑

4HNO3 = 4NO2↑ + O2↑ + 2H2O

5. Окисление низших оксидов в высшие и восстановление высших в низшие:

4FeO + O2 = 2Fe2O3

Fe2O3 + CO = 2FeO + CO2

6. Взаимодействие некоторых металлов с водой при высокой температуре:

Zn + H2O = ZnO + H2

7. Взаимодействие солей с кислотными оксидами при нагревании с выделением летучего оксида:

Ca3(PO4)2 + 3SiO2 = 3CaSiO3 + P2O5

8. Взаимодействие металлов с кислотами-оксилителями:

Zn + 4HNO3(конц.) = Zn(NO3)2 + 2NO2↑ + 2H2O

9. При действии водоотнимающих веществ на кислоты и соли:

2KClO4 + H2SO4(конц) = K2SO4 + Cl2O7 + H2O

10. Взаимодействие солей слабых неустойчивых кислот с более сильными кислотами:

NaHCO3 + HCl = NaCl + H2O + CO2

Ссылки

Wikimedia Foundation.
2010.

dic.academic.ru

Оксиды: классификация и химические свойства

Оксидами называются сложные вещества, в состав молекул которых входят атомы кислорода  в степни окисления – 2 и какого-нибудь другого элемента.

Оксиды могут быть получены при непосредственном взаимодействии кислорода с другим элементом, так и косвенным путём (например, при разложении солей, оснований, кислот). В обычных условиях оксиды бывают в твёрдом, жидком и газообразном состоянии, этот тип соединений весьма распространён в природе. Оксиды содержатся в Земной коре. Ржавчина, песок, вода, углекислый газ – это оксиды.

Они бывают солеобразующими и несолеобразующие.

Солеобразующие оксиды – это такие оксиды, которые в результате химических реакций образуют соли. Это оксиды металлов и неметаллов, которые при взаимодействии с водой образуют соответствующие кислоты, а при взаимодействии с основаниями – соответствующие кислые и нормальные соли. Например, оксид меди (CuO) является оксидом солеобразующим, потому что, например, при взаимодействии её с соляной кислотой (HCl) образуется соль:

CuO + 2HCl → CuCl2 + H2O.

В результате химических реакций можно получать и другие соли:

CuO + SO3 → CuSO4.

Несолеобразующими оксидами называются такие оксиды, которые не образуют солей. Примером могут служить СО, N2O, NO.

Солеобразующие оксиды в свою очередь бывают 3-х типов: основными (от слова «основание»), кислотными и амфотерными.

Основными оксидами называются такие оксиды металлов, которым соответствуют гидроксиды, относящиеся к классу оснований. К основным оксидам относятся, например, Na2O, K2O, MgO, CaO и т.д.

Химические свойства основных оксидов

1. Растворимые в воде основные оксиды вступают в реакцию с водой, образуя основания:

Na2O + H2O → 2NaOH.

2. Взаимодействуют с кислотными оксидами, образуя соответствующие соли

Na2O + SO3 → Na2SO4.

3. Реагируют с кислотами, образуя соль и воду:

CuO + H2SO4 → CuSO4 + H2O.

4. Реагируют с амфотерными оксидами:

Li2O + Al2O3 → 2LiAlO2.

Если в составе оксидов в качестве второго элемента будет неметалл или металл, проявляющий высшую валентность (обычно проявляют от IV до VII), то такие оксиды будут кислотными. Кислотными оксидами (ангидридами кислот) называются такие оксиды, которым соответствуют гидроксиды, относящие к классу кислот. Это, например, CO2, SO3, P2O5, N2O3, Cl2O5, Mn2O7 и т.д. Кислотные оксиды растворяются  в воде и щелочах, образуя при этом соль и воду.

Химические свойства кислотных оксидов

1. Взаимодействуют с водой, образуя кислоту:

SO3 + H2O → H2SO4.

Но не все кислотные оксиды непосредственно реагируют с водой (SiO2 и др.).

2. Реагируют с основанными оксидами с образованием соли:

CO2 + CaO → CaCO3

3. Взаимодействуют со щелочами, образуя соль и воду:

CO2 + Ba(OH)2 → BaCO3 + H2O.

В состав амфотерного оксида входит элемент, который обладает амфотерными свойствами. Под амфотерностью понимают способность соединений проявлять в зависимости от условий кислотные и основные свойства. Например, оксид цинка ZnO может быть как основанием, так и кислотой (Zn(OH)2 и H2ZnO2). Амфотерность выражается в том, что в зависимости от условий амфотерные оксиды проявляют либо осно́вные, либо кислотные свойства.

Химические свойства амфотерных оксидов

1. Взаимодействуют с кислотами, образуя соль и воду:

ZnO + 2HCl → ZnCl2 + H2O.

2. Реагируют с твёрдыми щелочами (при сплавлении), образуя в результате реакции соль – цинкат натрия и воду:

ZnO + 2NaOH → Na2 ZnO2 + H2O.

При взаимодействии оксида цинка с раствором щелочи (того же NaOH) протекает другая реакция: 

ZnO + 2 NaOH + H2O => Na2[Zn(OH)4].

Координационное число – характеристика, которая определяет число ближайших частиц: атомов или инов в молекуле или кристалле. Для каждого амфотерного металла характерно свое координационное число. Для Be и Zn – это 4; Для и Al – это 4 или 6; Для и Cr – это 6 или (очень редко) 4;

Амфотерные оксиды обычно не растворяются в воде и не реагируют с ней.

Остались вопросы? Хотите знать больше об оксидах?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

blog.tutoronline.ru

Оксиды. Классификация, свойства, получение, применение.

Оксиды — это неорганические соединения, состоящие из двух химических элементов, одним из которых является кислород в степени окисления -2. Единственным элементом, не образующим оксид, является фтор, который в соединении с кислородом образует фторид кислорода. Это связано с тем, что фтор является более электроотрицательным элементом, чем кислород.

Данный класс соединений является очень распространенным. Каждый день человек встречается с разнообразными оксидами в повседневной жизни. Вода, песок, выдыхаемый нами углекислый газ, выхлопы автомобилей, ржавчина — все это примеры оксидов.

Классификация оксидов

Все оксиды,  по способности образовать соли, можно разделить на две группы:

  1. Солеобразующие оксиды (CO2, N2O5,Na2O, SO3 и т. д.)
  2. Несолеобразующие оксиды(CO, N2O,SiO, NO и т. д.)

В свою очередь, солеобразующие оксиды подразделяют на 3 группы:

  • Основные оксиды  — (Оксиды металлов — Na2O, CaO, CuO и т д)
  • Кислотные оксиды — (Оксиды неметаллов, а так же оксиды металлов в степени окисления  V-VII — Mn2O7,CO2, N2O5, SO2, SO3 и т д)
  • Амфотерные оксиды (Оксиды металлов со степенью окисления III-IV а так же ZnO, BeO, SnO, PbO)

Данная классификация основана на проявлении оксидами определенных химических свойств. Так, основным оксидам соответствуют основания, а кислотным оксидам — кислоты. Кислотные оксиды реагируют с основными оксидами с образованием соответствующей соли, как если бы реагировали основание и кислота, соответствующие данным оксидам:Аналогично, амфотерным оксидам соответствуют амфотерные основания, которые могут проявлять как кислотные, так и основные свойства:Химические элементы проявляющие разную степень окисления, могут образовывать различные оксиды. Чтобы как то различать оксиды таких элементов, после названия оксиды, в скобках указывается валентность.

CO2 – оксид углерода (IV)

N2O3 – оксид  азота (III)

Физические свойства оксидов

Оксиды весьма разнообразны по своим физическим свойствам. Они могут быть как жидкостями (Н2О), так и газами (СО2, SO3) или твёрдыми веществами (Al2O3, Fe2O3). Приэтом оснОвные оксиды, как правило, твёрдые вещества. Окраску оксиды также имеют самую разнообразную — от бесцветной (Н2О, СО) и белой (ZnO, TiO2) до зелёной (Cr2O3) и даже чёрной (CuO).

Химические свойства оксидов

  • Основные оксиды

Некоторые оксиды реагируют с водой с образованием соответствующих гидроксидов (оснований):Основные оксиды реагируют с кислотными оксидами с образованием солей:Аналогично реагируют и с кислотами, но с выделением воды:Оксиды металлов, менее активных чем алюминий, могут восстанавливаться до металлов:

  • Кислотные оксиды

Кислотные оксиды в реакции с водой образуют кислоты:Некоторые оксиды (например оксид кремния SiO2) не взаимодействуют с водой, поэтому кислоты получают другими путями.

Кислотные оксиды взаимодействуют с основными оксидами, образую соли:Таким же образом, с образование солей, кислотные оксиды реагируют с основаниями:Если данному оксиду соответствует многоосновная кислота, то так же может образоваться кислая соль:Нелетучие кислотные оксиды могут замещать в солях летучие оксиды:

  • Амфотерные оксиды

Как уже говорилось ранее, амфотерные оксиды, в зависимости от условий, могут проявлять как кислотные, так и основные свойства. Так они выступают в качестве основных оксидов в реакциях с кислотами или кислотными оксидами, с образованием солей: И в реакциях с основаниями или основными оксидами проявляют кислотные свойства:

Получение оксидов

Оксиды можно получить самыми разнообразными способами, мы приведем основные из них.

Большинство оксидов можно получить непосредственным взаимодействием кислорода с химических элементом: При обжиге или горении различных бинарных соединений:Термическое разложение солей, кислот и оснований :Взаимодействие некоторых металлов с водой:

Применение оксидов

Оксиды крайне распространены по всему земному шару и находят применение как в быту, так и в промышленности. Самый важный оксид — оксид водорода, вода — сделал возможной жизнь на Земле. Оксид серы SO3 используют для получения серной кислоты, а также для обработки пищевых продуктов — так увеличивают срок хранения, например, фруктов.

Оксиды железа используют для получения красок, производства электродов, хотя больше всего оксидов железа восстанавливают до металлического железа в металлургии.

Оксид кальция, также известный как негашеная известь, применяют в строительстве. Оксиды цинка и титана имеют белый цвет и нерастворимы в воде, потому стали хорошим материалом для производства красок — белил.

Оксид кремния SiO2 является основным компонентом стекла. Оксид хрома Cr2O3 применяют для производства цветных зелёных стекол и керамики, а за счёт высоких прочностных свойств — для полировки изделий (в виде пасты ГОИ).

Оксид углерода CO2, который выделяют при дыхании все живые организмы, используется для пожаротушения, а также, в виде сухого льда, для охлаждения чего-либо.

in-chemistry.ru

Окись — это… Что такое Окись?

Окси́д (о́кисел, о́кись) — соединение химического элемента с кислородом, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй после фтора, поэтому к оксидам относятся почти все соединения химических элементов с кислородом. К исключениям относятся, например, дифторид кислорода OF2.

Оксиды — весьма распространенный тип соединений, содержащихся в земной коре и во вселенной вообще. Примерами таких соединений являются ржавчина, вода, песок, углекислый газ, ряд красителей. Окислами называется класс минералов, представляющих собой соединения металла с кислородом (см. Категория:Окислы).

Соединения, содержащие атомы кислорода, соединённые между собой, называются пероксидами (перекисями) и супероксидами. Они не относятся к категории оксидов.

Классификация

В зависимости от химических свойств различают:

Номенклатура

В соответствии с номенклатурой ИЮПАК, оксиды называют словом «оксид», после которого следует наименование химического элемента в родительном падеже, например: Na2O — оксид натрия, Al2O3 — оксид алюминия. Если элемент образует несколько оксидов, то в их названиях указывается его степень окисления римской цифрой в скобках сразу после названия (без пробела). Например, Cu2О — оксид меди(I), CuO — оксид меди(II), FeO — оксид железа(II), Fe2О3 — оксид железа(III), Cl2O7 — оксид хлора(VII).

Часто используют и другие наименования оксидов по числу атомов кислорода: если оксид содержит только один атом кислорода, то его называют монооксидом, моноокисью или закисью, если два — диоксидом или двуокисью, если три — то триоксидом или триокисью и т. д. Например: монооксид углерода CO, диоксид углерода СО2, триоксид серы SO3.

Также распостранены исторически сложившиеся (тривиальные) названия оксидов, например угарный газ CO, серный ангидрид SO3 и т. д.

Химические свойства: Основные оксиды.

1. Основный оксид + кислота = соль + вода

CuO + H2SO4 = CuSO4 + H2O

Примечание:кислота ортофосфорная или сильная.

2. Сильноосновный оксид + вода = щелочь

CaO + H2O = Ca(OH)2

3. Сильноосновный оксид + кислотный оксид = соль

CaO + Mn2O7 = Ca(MnO4)2

Na2O + CO2 = Na2СO3

4. Основный оксид + водород = металл + вода

CuO + H2 = Cu + H2O

Примечание: металл менее активный, чем алюминий.

Химические свойства: Кислотные оксиды.

1. Кислотный оксид + вода = кислота

SO3 + H2O = H2SO4

Некоторые оксиды, например SiO2, с водой не реагируют, поэтому их кислоты получают косвенным.

2. Кислотный оксид + основной оксид = соль

CO2 + CaO = CaCO3

3. Кислотный оксид + основание = соль + вода

SO2 + 2NaOH = Na2SO3 + H2O

Если кислотный оксид является ангидридом многоосновной кислоты, возможно образование кислых или средних солей:

Ca(OH)2 + CO2 = CaCO3↓ + H2O

CaCO3 + CO2 + H2O = Ca(HCO3)2

4. Нелетучий оксид + соль1 = соль2 + летучий оксид

SiO2 + Na2CO3 = Na2SiO3 + CO2

Химические свойства: Амфотерные оксиды.

При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства:

ZnO + 2HCl = ZnCl2 + H2O

При взаимодействии с сильным основанием или основным оксидом проявляют кислотные свойства:

ZnO + 2KOH + H2O = K2[Zn(OH)4)]  (в водном растворе)

ZnO + CaO = CaZnO2  (при сплавлении)

Получение оксидов

1. Взаимодействие простых веществ (за исключением инертных газов, золота и платины) с кислородом:

2H2 + O2 = 2H2O

2Сu + O2 = 2СuO

При горении в кислороде щелочных металлов (кроме лития), а также стронция и бария образуются пероксиды и надпероксиды:

2Na + O2 = Na2O2

K + O2 = KO2

2. Обжиг или горение бинарных соединений в кислороде:

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

CS2 + 3O2 = CO2 + 2SO2

2PH3 + 4O2 = P2O5 + 3H2O

3. Термическое разложение солей:

CaCO3 = CaO + CO2

2FeSO4 = Fe2O3 + SO2↑ + SO3

4. Термическое разложение оснований или кислот:

2Al(OH)3 = Al2O3 + 3H2O↑

4HNO3 = 4NO2↑ + O2↑ + 2H2O

5. Окисление низших оксидов в высшие и восстановление высших в низшие:

4FeO + O2 = 2Fe2O3

Fe2O3 + CO = 2FeO + CO2

6. Взаимодействие некоторых металлов с водой при высокой температуре:

Zn + H2O = ZnO + H2

7. Взаимодействие солей с кислотными оксидами при нагревании с выделением летучего оксида:

Ca3(PO4)2 + 3SiO2 = 3CaSiO3 + P2O5

8. Взаимодействие металлов с кислотами-оксилителями:

Zn + 4HNO3(конц.) = Zn(NO3)2 + 2NO2↑ + 2H2O

9. При действии водоотнимающих веществ на кислоты и соли:

2KClO4 + H2SO4(конц) = K2SO4 + Cl2O7 + H2O

10. Взаимодействие солей слабых неустойчивых кислот с более сильными кислотами:

NaHCO3 + HCl = NaCl + H2O + CO2

Ссылки

Wikimedia Foundation.
2010.

dic.academic.ru

оксид — Викисловарь

В Википедии есть страница «Оксиды».

Содержание

  • 1 Русский
    • 1.1 Морфологические и синтаксические свойства
    • 1.2 Произношение
    • 1.3 Семантические свойства
      • 1.3.1 Значение
      • 1.3.2 Синонимы
      • 1.3.3 Антонимы
      • 1.3.4 Гиперонимы
      • 1.3.5 Гипонимы
      • 1.3.6 Согипонимы
    • 1.4 Родственные слова
    • 1.5 Этимология
    • 1.6 Фразеологизмы и устойчивые сочетания
    • 1.7 Перевод
    • 1.8 Анаграммы
    • 1.9 Библиография

Морфологические и синтаксические свойства[править]

падеж ед. ч. мн. ч.
Им. окси́д окси́ды
Р. окси́да окси́дов
Д. окси́ду окси́дам
В. окси́д окси́ды
Тв. окси́дом окси́дами
Пр. окси́де окси́дах

ок-си́д

Существительное, неодушевлённое, мужской род, 2-е склонение (тип склонения 1a по классификации А. А. Зализняка).

Корень: -оксид- [Тихонов, 1996].

Произношение[править]

  • МФА: ед. ч. [ɐˈksʲit], мн. ч. [ɐˈksʲidɨ]

Семантические свойства[править]

ru.wiktionary.org

ОКСИДЫ — это… Что такое ОКСИДЫ?

соединения элементов с кислородом. В О. степень окисления атома кислорода Ч2. К О. относятся все соед. элементов с кислородом, кроме содержащих атомы О, соединенные друг с другом (пероксиды, надпероксиды, озо-ниды), и соед. фтора с кислородом (OF2 и др.). Последние следует называть не оксидами, а фторидами кислорода, т. к. степень окисления кислорода в них положительная.

При комнатной т-ре большинство О.-твердые в-ва (СаО, Fe2O3 и др.), нек-рые-жидкости (Н 2 О, Сl2 О 7 и др.) и газы (NO, SO2 и др.). Хим. связь в О.-ионная и ионно-ковалент-ная. Т-ры плавления и кипения О. понижаются с возрастанием в них доли ковалентной связи. Многим О. в твердом состоянии присущ полиморфизм. Нек-рые О. элементов III, IV, V гр. (напр., В, Si, As, Р) образуют рентгеноаморфные стекла. Оксиды s- и /^-элементов (напр., MgO, Аl2 О 3, SiO2 )-диэлектрики, О. переходных металлов (Fe, Сг и др.) часто обладают св-вами полупроводников. Нек-рые О.-пьезоэлектрики (напр., кварц), ферромагнетики [О. Fe, Cr(IV) и др.]. Вследствие своей многочисленности, разнообразия св-в и доступности О. представляют исключительно важный класс неорг. в-в.

Большинство О.-солеобразующие; при солеобразовании, протекающем обычно при нагр. (напр., Na2O + SiO2 Na2SiO3), степени окисления элементов не изменяются. Известно неск. несолеобразующих О. (напр., NO), не вступающих в подобные р-ции. Солеобразующие О.


подразделяют на основные, кислотные и амфотерные. Элемент основного О. (Li2O, BaO и др.) при образовании соли (напр., ВаО + SO3 BaSO4) становится катионом, элемент кислотного О. (напр., SO3, NO2, P2O5) входит в состав кислородсодержащего аниона соли. Амфотерные О. (напр., ZnO, BeO, А12 О 3) могут реагировать и как основные О., и как кислотные, напр.:

Уменьшение степени окисления элемента и увеличение радиуса его иона делает О. более основным, наоборот, увеличение степени окисления и уменьшение ионного радиуса-более кислотным (напр., МnО- основной оксид, Мn2 О 7 -кислотный). Многие О., напр. Рb3 О 4, Fe3O4, содержащие элемент в разных степенях окисления, являются двойными О.: (PbII2, PbIV)O4, (FeII, FeIII2)O4. Среди О., особенно среди О. d-элементов, много нестехиометрич. соединений.

О. щелочных и щел.-зем. металлов активно реагируют с водой, образуя щелочи, напр.: К 2 О + Н 2 О 2КОН; нек-рые кислотные О. -ангидриды неорганических кислот- активно взаимод. с водой, давая к-ты, напр.: SO3 + Н 2 О H2SO4. Большинство О. металлов в компактном состоянии при комнатной т-ре с водой не реагируют. Основные О. обычно быстро реагируют с к-тами в р-ре с образованием солей, напр.:

Восстановители (С, Н 2, активные металлы, в частности Mg, Al) при нагр. восстанавливают многие О. до металла, напр.:

При сильном нагревании О. с углеродом часто образуются карбиды (напр., СаО + ЗС СаС 2 + СО), при хлорировании смеси О. с углем-хлориды (напр., В 2 О 3 + ЗС + + ЗСl2 2ВСl3 + 3СО).

О. широко распространены в природе. В очень больших кол-вах встречаются Н 2 О и SiO2. Мн. минералы являются оксидами (гематит Fe2O3, магнетит Fe3O4, касситерит SnO2 и др.).

Многие О. образуются при взаимод. простых в-в с кислородом (Li2O, СаО, La2O3, SO2 и др.). О. металлов обычно получают термич. разложением гидроксидов, карбонатов, нитратов и др. солей кислородсодержащих к-т (напр., СаСО 3 СаО + СО 2), анодным окислением металлов, О. неметаллов — окислением кислородом водородсодержащих соед. неметаллов (напр., 2H2S 4+ 3О 2 2SO2 + 2H2O). В пром-сти в больших кол-вах получают СаО, Аl2 О 3, MgO, SO3, CO, CO2, NO и другие О. Используют О. как огнеупоры (SiO2, MgO, Al2O3 и др.), адсорбенты (SiO2 -сшгака-гель, Аl2 О 3 и др.), катализаторы (V2O5, Al2O3 и др.), в произ-ве строит. материалов, стекол, фарфора, фаянса, магн. материалов, пьезоэлектриков и др. О. металлов (Fe, Ni, Al, Sn и др.)-сырье в произ-ве металлов, О. неметаллов (напр., S, Р, N)- в произ-ве соответствующих к-т.

С. И. Дракин.

Химическая энциклопедия. — М.: Советская энциклопедия.
Под ред. И. Л. Кнунянца.
1988.

dic.academic.ru

Кислотные оксиды — это… Что такое Кислотные оксиды?

Кислотные оксиды (ангидриды) – оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами. Элементы в кислотных оксидах обычно проявляют степень окисления от IV до VII. Они могут взаимодействовать с некоторыми основными и амфотерными оксидами, например: с оксидом кальция CaO, оксидом натрия Na2О, оксидом цинка ZnO, либо с оксидом алюминия Al2O3 (амфотерный оксид).

Характерные реакции

Кислотные оксиды могут реагировать с:

1)основными оксидами:

3Na2O + P2O5 => 2Na3PO4

2) с водой (практически все кислотные оксиды при взаимодействии с водой (реакция гидратации) образуют соответствующие им кислотные гидроксиды (кислородосодержащие кислоты). Например, при растворении оксида серы (VI) в воде образуется серная кислота:

SO3 + H2O → H2SO4

3)с основаниями (щелочами):

2NaOH + CO2 => Na2CO3 + H2O

4)с амфотерными оксидами:

Fe2O3 + 3CO2 => Fe2(CO3)3

Кислотные оксиды могут быть получены из соответствующей кислоты:

H2SiO3 → SiO2 + H2O

Примеры

См. также

В этой статье не хватает ссылок на источники информации.
Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 13 мая 2011.

dic.academic.ru