Содержание

МЫШЬЯК И ЗДОРОВЬЕ ЧЕЛОВЕКА | Энциклопедия Кругосвет

Содержание статьи

МЫШЬЯК И ЗДОРОВЬЕ ЧЕЛОВЕКА. Мышьяк – химический элемент V группы периодической таблицы, относится к семейству азота. Мышьяк, вероятно, можно отнести к одному из самых противоречивых химических элементов. Действительно, с одной стороны, это страшный яд: достаточно человеку проглотить ничтожную щепотку его оксида или один раз вдохнуть газообразный мышьяковистый водород, чтобы смертельно отравиться. С другой – некоторые соединения мышьяка не более ядовиты, чем поваренная соль. Сравнительно инертен и чистый мышьяк. Более того, соединения мышьяка применяются в медицине как лекарственные средства. Мышьяком в течение многих веков были отравлены десятки коронованных особ и сотни постылых мужей, и мышьяком же укрепляли здоровье. Ничтожные следы мышьяка в питьевой воде – бедствие для десятков миллионов жителей многих стран, и в то же время мышьяк в значительных количествах содержится в некоторых лечебно-столовых минеральных водах. Соединения мышьяка вызывают рак, и они же используются в онкологии как противоопухолевые препараты.

Подобное противопоставление можно продолжить. Так что же мышьяк для человека – друг или враг? Здесь уместно вспомнить изречение знаменитого средневекового врача Теофраста Бомбаста фон Гоггенгейма (Парацельса): «Все есть яд, и ничто не лишено ядовитости; одна лишь доза делает яд незаметным».

Вероятно, в истории человечества не было химического элемента со столь зловещей репутацией. Мышьяк традиционно ассоциируется с отравой:

У кого нет ножа,
У того есть мышьяк!

В.Хлебников

В прошлом «популярность» этого яда заключалась в его коварности: у него не было запаха и вкуса, а смерть легко объяснялась различными болезнями, особенно если жертву отравляли постепенно:

Ты к ней на чай сходи и сыпь ей в чай мышьяк.
Побольше дозу дай, а начинай с дозинки
.
Б.Ахмадулина

Многие столетия мышьяк считался «королем ядов». Было у него еще одно красноречивое название: «порошок для наследников». Не гнушались использовать мышьяк (вернее, его соединения) и для устранения политических противников. Правители некоторых государств (например, в Венеции) держали тайные службы специалистов-отравителей. Особенно широко «применяли» мышьяк в средневековой Франции и Италии. Среди прочих этим ядом был отравлен папа Климент XIV. История сохранила имя некоей Тофаны из Сицилии, страшная профессия которой вынудила ее в конце 17 в. бежать из Палермо в Неаполь. Тофана продавала женщинам, желавшим ускорить смерть своих мужей, бутылочки с жидкостью без запаха, вкуса и цвета. Небольшого количества ее было достаточно, чтобы умертвить человека; смерть наступала медленно и безболезненно. Просто человек постепенно утрачивал силы и аппетит, его постоянно мучила жажда. Жертвы Тофаны исчислялись сотнями. Aqua Tophana – вода Тофаны, по мнению специалистов, представляла собой не что иное, как водный раствор мышьяковой кислоты с добавкой трав.

Мрачной славе мышьяка во многом способствовали и писатели: число жертв этого элемента во всех литературных произведениях, возможно, превышает число фактически погубленных. Агата Кристи, например, в своих бесчисленных детективах травила героев, как правило, мышьяком. Знали об этом яде и далеко от Европы. Полагают, что впервые упомянул о мышьяке как о яде основатель арабской алхимии Джабир ибн Хайян (Гебер), живший в 8–9 вв. В китайской классической литературе, как и в европейской, описаны случаи знаменитых убийств посредством мышьяка.

Действие мышьяка на человека.

В средние века, в конце династии Мин, в Китае была опубликована книга по ремеслам; в ней говорилось, что рабочие, занятые приготовлением мышьяковых пестицидов, не выдерживают более двух лет: у них вылезают волосы, проявляются другие признаки отравления. В современных медицинских справочниках можно прочитать, что мышьяк вызывает при отравлении «общетоксическое (нефротоксическое, гепатотоксическое, энтеротоксическое, нейротоксическое) действие». При остром отравлении, когда в организм попадают сразу десятки или сотни миллиграммов яда, картина напоминает заболевание холерой: сильные боли по всему пищеварительному каналу, рвота и понос, синюшная окраска кожи лица, судороги, нитевидный пульс, затруднение дыхания. Такое отравление часто заканчивается смертью в результате острой сердечно-сосудистой недостаточности. Летальной для 50% людей считается доза от 60 до 200 мг, в зависимости от возраста, пола, массы, состояния здоровья, а также химического состава яда. Смерть наступает в среднем через 10 часов.

Самое ядовитое производное мышьяка – газообразный мышьяковистый водород (арсин) Ash4, один из сильнейших неорганических ядов. При содержании в воздухе всего 0,05 мг/л смертельная доза попадает в организм за полчаса, а концентрация 5 мг/л убивает мгновенно. Активированный уголь сорбирует арсин слабо, поэтому против него обычный противогаз не защитник. В виде простого вещества мышьяк значительно менее опасен ввиду его малой химической активности.

Соединения As(III) в 25–60 раз токсичнее, чем As(V), т.к. они способны связываться с тиольными (сульфгидрильными) группами – SH цистеина и метионина в составе белков-ферментов, блокируя их работу. Газообразный арсин, попадая в кровь через легкие, разрушает эритроциты и повреждает почки; при этом моча становится черной. Смерть может наступить при попадании в легкие всего нескольких миллиграммов арсина.

Иначе проявляется хроническое отравление малыми дозами. Человек постепенно слабеет, страдает от анемии, поносов или запоров; у него наблюдается сероватый цвет лица, исхудание, потеря сил, шелушение кожи и образование язв, кровоточивость десен; постепенно атрофируются мышцы ног и рук, кожа пигментируется и шелушится, в ней возможны злокачественные изменения, а на ногтях появляются характерные полосы. При легких отравлениях наблюдаются потеря аппетита, неприятный вкус во рту, слабость, озноб, ослабление пульса, нарушения сна.

В 1834 немецкий физик Роберт Бунзен, который шесть лет работал с очень ядовитым производным какодила и в результате чуть не умер от отравления, обнаружил, что антидотом при отравлении мышьяком может служить свежеосажденный гидроксид железа. В настоящее время средством при остром отравлении мышьяком служит промывание желудка и немедленное введение веществ, содержащих тиольные группы, которые конкурируют с аминокислотами в ферментах и «перехватывают» ионы мышьяка. Среди таких веществ – унитиол SH–CH2–CH(SH)–CH2–SO3Na и дитиоглицерин SH–CH2–CH(SH)–CH2–OH, известный как БАЛ («британский антилюизит»). Эти соединения образуют с мышьяком более прочные комплексы, чем ферменты и таким образом высвобождают последние из «мышьякового плена».

Не следует думать, что мышьяком травились лишь те, у кого были тайные или явные враги. В прошлом опасность подстерегала людей со стороны внешне безобидных мышьяковистых красок, таких как королевская желтая (измельченный минерал аурипигмент, As2S3), браунгшвейгская зелень (смесь CuSO4, As2O3 и K2CO3), зелень Шееле (кислая медная соль мышьяковой кислоты). Ими красили стены, обои, легкие ткани для бальных платьев, искусственные цветы и даже детские игрушки. К тому же в сырых помещениях плесневый гриб Penicillum brevicaule перерабатывал мышьяковистые краски в ядовитый газ с чесночным запахом – триметиларсин. Конечно, такое применение мышьяковых соединений давно запрещено (в России – с 1867). В настоящее время опасности подвергаются рабочие некоторых металлургических предприятий, вдыхающие мышьяковую пыль, сельскохозяйственные рабочие, имеющие дело с мышьяковыми инсектицидами. Немытые фрукты и овощи, обработанные такими пестицидами, также могут вызвать отравление. Токсичность различных соединений мышьяка снижается в ряду: арсины > арсениты > арсенаты > металлический мышьяк.

Устойчивость к мышьяку индивидуальна и может достигать поразительного уровня. Так, с середины 19 в. крестьяне из австрийской провинции Штирия в течение нескольких поколений принимали мышьяк в небольших дозах «для улучшения цвета лица, повышения аппетита, облегчения дыхания и профилактики болезней». Снадобья с мышьяком они доставали через коробейников, которые покупали их у рабочих стекольных заводов в венгерской части империи. Как выяснилось, это были оксид мышьяка, его сульфид или порошок чистого мышьяка. Начинали эти удивительные «арсенофаги» с ежедневного приема одного грана (32 мг), постепенно повышая затем дозу. Сообщалось, что один крестьянин потреблял несколько раз в неделю по четыре грана (0,26 г), а другой – по шесть гран (0,39 г) мышьяка, то есть по три заведомо летальные дозы! Многие не верили таким сообщениям, считая, что жители Штирии используют какое-то другое вещество. Однако наличие мышьяка в «лекарстве» и его регулярное употребление подтвердил К.Маклаган, который в 1864 опубликовал результаты своих исследований (включая даже анализ мочи крестьян) в «Эдинбургском медицинском журнале».

Значит, люди (по крайней мере, некоторые) могут выработать невосприимчивость к мышьяку? Вспоминается легенда о знаменитом парфянском царе Митридате (2–1 вв. до н.э.): опасаясь быть отравленным, он принимал разные яды, постепенно увеличивая дозу, так что когда ему угрожала смерть от врагов, он не смог отравиться, и ему пришлось броситься на меч. Известна адаптация людей и животных и к другим ядам. В этом вопросе еще много неясного, так как эксперименты на людях никто, понятно, не проводит.

Мышьяк и криминалистика.

Долгое время отравление мышьяком могло сойти с рук отравителям, поскольку не было надежных способов установления причины отравления. Так, официально Наполеон умер от рака желудка. Но, когда спустя полтора столетия после его смерти, проанализировали волосы императора, состриженные еще при его жизни, в них обнаружили мышьяк в количестве около 0,001% – примерно в 13 раз больше нормального содержания, но что слишком мало для отравления. Однако до сих пор идут споры по поводу того, связано ли повышенное содержание мышьяка в волосах с преднамеренным отравлением или это просто стечение обстоятельств (мышьяк мог содержаться в зеленой краске обоев, а также в обычных для того времени лекарственных препаратах). Более определенные данные были получены относительно отравления мышьяком в 1872 первого американского исследователя Арктики Ч.Ф.Холла, в волосах которого почти через сто лет после смерти также нашли повышенное содержание мышьяка.

Массовые случаи случайного и намеренного отравления мышьяком побудили ученых разрабатывать методы обнаружения отравы. Английский физик и химик Роберт Бойль для обнаружения соединений мышьяка использовал хлорид ртути; один из основоположников аналитической химии шведский химик и минералог Торнберн Улаф Бергман (1735–1784) обратил внимание на образование желтого осадка сульфида мышьяка; шведский химик Карл Вильгельм Шееле обнаруживал мышьяк по запаху при восстановлении его соединений цинком в кислой среде. Однако судьи в те времена не принимали такие сомнительные с их точки зрения доказательства, как какие-то осадки или запахи. Кроме того, эти аналитические реакции были неспецифическими: их могли дать и другие элементы. Судьям нужно было предъявить чистый мышьяк!

Это смог сделать английский химик Джеймс Марш (1794–1846), который работал в Королевской Военной академии и был ассистентом знаменитого физика Майкла Фарадея. Марш открыл чувствительную для тех времен реакцию на мышьяк. Свою методику он разработал после неудачного выступления в суде в качестве эксперта по делу об отравлении мышьяком, когда судьи потребовали выделить из трупа мышьяк в чистом виде. Методику анализа Марш опубликовал в 1836 в «Новом Эдинбургском философском журнале». В ее основу Марш положил открытую Шееле реакцию, в результате которой образуется арсин, например, As2O3 + 6Zn + 6H2SO4 ® 2AsH3 + 6ZnSO4 + 3H2O.

Марш обнаружил, что арсин при нагревании (до 300–400ERROR С) разлагается на мышьяк и водород. Газообразные продукты реакции, содержащие арсин, пропускались через стеклянную трубку, конец которой сильно нагревался горелкой. На выходе трубки Марш поместил фарфоровую пластинку, и на ее белой поверхности хорошо был виден осевший мышьяк в виде блестящего металлического зеркала. Этот простой прибор позволил умелому химику обнаруживать мышьяк в микрограммовых количествах – до 0,001 мг. Однако другие химики вскоре выяснили, что реакция Марша может привести к ошибке, поскольку такое же зеркало образуется и в присутствии сурьмы. Марш попытался найти реакцию, позволяющую различить эти элементы. На исследуемое пятно он наносил каплю воды и держал ее на небольшом расстоянии от пламени. В этих условиях мышьяк быстро окислялся до растворимой в воде мышьяковистой кислоты. При обработке этого раствора нитратом серебра появлялась желтая муть в результате реакции

HAsO2 + 3AgNO3 + H2O ® Ag3AsO3 + 3HNO3.

Эта реакция характерна для мышьяка, но не для сурьмы. Спустя столетие немецкий химик Г.Локерман еще в десять раз увеличил чувствительность пробы Марша, доведя ее до 0,0001 мг мышьяка. Интересно, что такая чувствительность могла приводить к положительной пробе, даже когда мышьяка в анализируемом объекте заведомо не было; оказалось, что следы этого элемента часто содержатся в реактивах – кислоте и цинке!

Больших успехов в практическом применении методики Марша достиг знаменитый парижский профессор химии, знаток медицины, основатель науки токсикологии Матео Хосе Бонавентура Орфила (1787–1853). Испанец по происхождению, он, несмотря на настойчивые требования своего правительства вернуться на родину, остался во Франции, где и провел свои пионерские исследования почти всех известных в то время ядов. Его книга Общая токсикология, написанная еще в наполеоновские времена и переведенная на многие языки, даже в конце века не утратила своего значения. Уже через 4 года после публикации Марша, в 1840, Орфила использовал новый метод в громком криминальном деле, за которым следила общественность не только Франции, но и всего мира. Некая Мари Лафарж вышла замуж по расчету. Однако сразу после свадьбы выяснилось, что, рассказывая о своем состоянии, жених обманывал невесту, поскольку сам хотел женитьбой поправить свое отчаянное финансовое положение. Расплата наступила быстро; Мари в несколько приемов купила в аптеке мышьяк якобы для уничтожения крыс, и вскоре все было кончено. Несмотря на подозрения родственников несчастного, врач не смог вовремя распознать симптомы отравления. После похорон вдову обвинили в преднамеренном убийстве. В ходе следствия провели исследования остатков содержимого желудка покойного. Нескольким экспертам не удалось обнаружить там ничего подозрительного. Но когда за дело взялся Орфила, успевший в совершенстве овладеть методом Марша, все стало ясно: в каждом исследуемом образце он обнаружил высокие концентрации мышьяка. Вдова была осуждена.

Орфила, уже в качестве научного исследования, проанализировал содержание мышьяка во многих природных объектах. Используя исключительную чувствительность методики Марша, он установил, что мышьяк весьма распространен в природе и содержится во многих образцах, хотя и в очень малых количествах. По современным данным, в 1 т земной коры присутствует в среднем 5 г мышьяка. Орфила обнаружил мышьяк даже в растительных и животных организмах. В организме человека мышьяк содержится в разных органах, но накапливается в основном в волосах (до 1,9 мг/кг) и в ногтях (до 2,9 мг/кг). Это связано, вероятно, с высоким содержанием сернистых соединений в кератине – белковом веществе этих тканей, а мышьяк с такими соединениями образует прочные связи. Меньше всего мышьяка в сердце (менее 0,07 мг/кг), селезенке и мозге (менее 0,14 мг/кг).

Прошел век, и 21 июля 1949 французская полиция арестовала по аналогичному подозрению Мари Бернар, которую прозвали «черной вдовой из Лудена». Ее обвинили в отравлении в 1947 своего мужа и еще 11 человек. Но на этот раз все оказалось намного сложнее: процесс длился более десяти лет, но доказать виновность Бернар не удалось, хотя на местном кладбище обнаружили все трупы с признаками отравления мышьяком. Защита с помощью чувствительной пробы Марша установила, что за многие годы после смерти мышьяк мог проникнуть в останки и накопиться там с помощью микроорганизмов через содержащие мышьяк почвенные воды. К экспертизе привлекли даже нобелевского лауреата Фредерика Жолио-Кюри, поскольку при анализах использовали также радиоактивный метод. Оказалось, что на месте многих кладбищ раньше были поля, которые обрабатывали пестицидами, содержащими мышьяк. Ранее Орфила обнаруживал мышьяк в костях людей, которые никак не могли быть отравлены. Выяснилось также, что один из соседей Бернар отравил свою собаку мышьяком, но спустя два года, когда останки собаки выкопали, эксперты-криминалисты не обнаружили в них даже следов мышьяка. В результате таких противоречивых данных суду в 1961 пришлось, в конце концов, оправдать Бернар.

«Военный мышьяк».

После начала применения в ходе Первой мировой войны хлора и других отравляющих газов, химики разных стран начали разрабатывать еще более смертоносное химическое оружие. Большое внимание они, конечно, уделили мышьяку. В 1918 американский химик У.Дж.Льюис в поисках новых компонентов для химического оружия провел реакцию ацетилена с хлоридом мышьяка в присутствии хлорида алюминия. В результате у него образовалась темно-бурая жидкость с запахом герани, которая содержала в виде основного компонента b-хлорвинилдихлорарсин: AsCl3 + C2H2 ® ClCH=CHAsCl2, а также b,b’-дихлордивинилдихлорарсин (ClCH=CH)2AsCl2 и b,b’,-трихлортривиниларсин (ClCH=CH)3As. Эта приятно пахнущая смесь, названная по имени химика люизитом, обладала ужасным кожно-нарывным, общеядовитым и раздражающим действием. Уже в концентрации 0,3 мг/м3 пары люизита вызывают раздражение верхних дыхательных путей, а при увеличении концентрации – поражение глаз, кожи и смерть. При попадании на кожу капелек люизита он быстро впитывается в нее, нарушая ход многих биохимических процессов и вызывая тяжелейшее поражение организма, особенно сосудистой системы. Это обстоятельство в свое время дало повод американцам назвать люизит «росой смерти».

Вскоре были синтезированы и другие мышьяковые отравляющие вещества. В их числе была группа веществ раздражающего действия, ее типичные представители – дифенилхлорарсин (С6Н5)2АsСl, дифенилцианарсин (C6H5)2AsCN, адамсит:

Вещества этой группы избирательно действуют на нервные окончания слизистых оболочек – главным образом оболочек верхних дыхательных путей. Это вызывает рефлекторную реакцию организма освободиться от раздражителя, чихая или кашляя. В отличие от слезоточивых отравляющих веществ, эти вещества даже при легком отравлении действуют и после того, как пораженный выбрался из отравленной атмосферы. В течение нескольких часов человека сотрясает мучительный кашель, появляется боль в груди и в голове, начинают непроизвольно течь слезы. Возникает рвота, одышка, чувство страха; все это доводит до совершенного изнурения. И вдобавок эти вещества вызывают общее отравление организма.

К счастью, люизит и другие мышьяковые отравляющие вещества не успели применить в войне, но во всех странах, в том числе и в СССР, люизит накопили в огромных количествах – десятки тысяч тонн. Обезвредить его безопасным способом непросто. Один из способов – окисление до малотоксичных мышьяковых кислот:

ClCH=CHAsCl2 + H2O2 ® CHAs(O)(OH)2 + 2HCl;

другой путь – хлорирование с образованием AsCl3, который находит применение в промышленности (см. МЫШЬЯК).

Мышьяк в питьевой воде.

Во второй половине 20-го столетия оказалось, что мышьяком травятся, не подозревая этого, миллионы людей. И получают они отраву не от завистников или нетерпеливых наследников, а из собственного колодца! Мышьяк в питьевой воде стал настоящей экологической проблемой.

Ученые установили, что пагубное воздействие могут оказывать и очень малые дозы мышьяка, если их попадание в организм, например, с пищей или с водой, происходит в течение длительного времени. В 1942 службой здравоохранения США была установлена предельно допустимая концентрация (ПДК) мышьяка в питьевой воде, равная 50 мкг (0,05 мг) в одном литре. Такой же стандарт был принят и Всемирной организаций здравоохранения в 1963. Однако эпидемиологические исследования показали, что даже при такой малой концентрации заметно повышается риск онкологических заболеваний, поэтому в 2002 в США была принята более жесткая норма: не более 10 мкг/л.

Какие же были доводы в пользу такой нормы? В середине 20 в. на Тайване забили тревогу: оказалось, что питьевая вода из глубоких скважин (артезианских колодцев) юго-восточного побережья содержит много мышьяка. Употребление в этих местах «мышьяковой воды» связали с частым в этом регионе так называемым синдромом «черных ног». При этой болезни у человека на конечностях, особенно на ступнях, появляются белые пятна, которые потом становятся коричневыми и, в конце концов, черными. Кожа на этом месте становится грубой, она трескается и покрывается язвами. Если болезнь заходит далеко, то для спасения жизни приходится прибегать к ампутации. Частота этого заболевания начала быстро увеличиваться в 50-е годы, что совпало с бумом бурения артезианских колодцев в сельских районах Тайваня. Как показал анализы, вода в таких колодцах содержала от 100 до 1800 мкг/л мышьяка, т.е. в ряде случаев было 180-кратное превышение новой «американской нормы». Были приняты срочные меры по снабжению населения очищенной водой, и с 1956 число жертв этой страшной болезни начало снижаться.

В 1977 обследование 40 тысяч жителей тех же районов Тайваня преподнесло новый неприятный сюрприз: заболеваемость раком кожи оказалась прямо пропорциональной содержанию мышьяка в колодезной воде. При этом синдром «черных ног» был зафиксирован в 379 случаях, а рака кожи – в 438. Цифры были чудовищны: на тысячу человек приходилось 10,6 случаев рака кожи (причем у мужчин второе чаще, чем у женщин). Четкая корреляция между заболеваемостью и содержанием мышьяка в питьевой воде была обнаружена и в других странах, в том числе в Китае, Индии, Бангладеш, Вьетнаме, США. При этом в воде преобладали неорганические соединения мышьяка, среди которых больше было более опасного трехвалентного. Наиболее высокая концентрация (14 000 мкг/л) была зафиксирована в ряде источников в Бангладеш, где ПДК была превышена в 280 раз. Выпивая всего литр такой воды, человек получает высшую (допустимую лишь в лечебных целях) дозу мышьяка – и так десятилетиями…

Естественно, встал вопрос о том, как очистить воду от мышьяка. Задача эта непростая, если учесть огромные объемы потребляемой воды и ничтожные концентрации в ней мышьяка. Самый простой способ – окислить As(III) до As(V) и снизить, таким образом, токсичность в десятки раз. Очень быстро окисление идет под действием хлора, озона или диоксида марганца. Затем образовавшийся As(V) можно удалить методом коагуляции и соосаждения, который обычно применяется на водопроводных станциях для очистки питьевой воды. Для этого подходят, например, соли алюминия и железа(III). При их добавлении к воде с обычной жесткостью идет реакция

Fe2(SO4)3 + 3Ca(HCO3)2 ® 2Fe(OH)3 + 3CaSO4 + 6CO2.

Осадок гидроксида металла и захватывает с собой мышьяк. Таким образом, принципиальных затруднений, кроме соответствующих затрат, для очистки воды от мышьяка нет.

Мышьяк в медицине.

Мышьяк, как и многие другие микроэлементы, вероятно, необходим для нормального функционирования организма, хотя окончательно его роль не выяснена. Известно, однако, что полное отсутствие мышьяка в рационе мышей, крыс, овец и свиней снижает репродуктивность, вес новорожденных и скорость прироста массы. В организм человека мышьяк попадает в микродозах со многими продуктами питания. Так, в морепродуктах его содержится в среднем около 5 мг/кг, в мясе и зерновых – 0,5 мг/кг, а вот в овощах и фруктах мышьяка почти нет.

Присутствуя в организме в очень малых количествах, мышьяк благотворно влияет на процессы кроветворения, обмен веществ, скорость роста тканей, толщину костей; предполагают, что микродозы мышьяка повышают устойчивость организма к действию вредных микробов. Лекарственное действие соединений мышьяка заметили давно. В Древнем Китае эликсиром «трех желтых субстанций» – смесью порошков природных минералов – аурипигмента, реальгара (As4S4) и серы лечили душевные расстройства. «Отец медицины» Гиппократ рекомендовал пасту из сульфида мышьяка для лечения язв. В средневековье мышьяковистые лекарства широко применялись для лечения ангин и возвратного тифа. В 16 в. Парацельс рекомендовал для лечения «огнепостоянный мышьяк», представляющий собой арсенат калия.

В начале 13 в. Томас Фаулер, работавший в больнице английского города Стаффорда, ввел в медицинскую практику раствор, который вскоре получил широкое распространение под названием «фаулерова раствора». Это был 1%-ный водно-спиртовой раствор арсенита калия, полученный растворением As2O3 в K2CO3, с добавкой лаванды (чтобы его не спутали с водой). Его применяли для лечения эпилепсии и астмы, псориаза и экземы, сифилиса и ревматизма, заболеваний нервной системы и даже белокровия (лейкемии). Своего пика лечение мышьяком достигло в 18–19 вв. Но постепенно стала очевидной и его опасность, и применение мышьяка пошло на убыль. Исключение, пожалуй, составил лишь знаменитый «препарат 606» – сальварсан.

Это лекарство было синтезировано в Германии, что неслучайно. Первую декаду 20 в. можно считать золотым веком немецкой медицинской науки, намного опередившей тогда другие страны. Множество молодых врачей со всего мира стекались в Германию для стажировки. Одним из самых ярких лидеров немецкой медицинской и биохимической школы был Пауль Эрлих. Еще в студенческие годы он, изучив случаи свинцового отравления, пришел к выводу о том, что некоторые химические вещества избирательно действуют на определенные ткани человека. Этой теории он придерживался и в дальнейшей своей работе; по его меткому выражению, для каждой болезни следует искать «магическую пулю», которая бы поражала возбудителей, оставаясь сравнительно безвредной для организма.

Эрлих впервые предложил искать новые биологически активные вещества методом скрининга (см. также ХИМИЯ ЛЕКАРСТВ). Так, в поиске эффективного лекарства от сифилиса он синтезировал 605 веществ, не давшие никакого результата. И лишь следующий мышьяксодержащий «препарат 606», полученный в 1909 и названный впоследствии сальварсаном, обладал нужными свойствами – он оказался летальным для микроорганизмов, вызывающих сифилис и ряд других сходных заболеваний. Вместе со своим японским коллегой Сахатиро Хата Эрлих изучил воздействие сальварсана на больных сифилисом. Уже первые опыты, проведенные весной 1910, показали исключительную эффективность этого средства. Его единственная инъекция могла излечить и некоторые тропические болезни, родственные сифилису.

Успешное применение в медицинской практике сальварсана ознаменовало начало новой эпохи в медицине – химиотерапии, т.е. лечения инфекционных, паразитарных и опухолевых заболеваний химическими веществами, которые нарушают жизнедеятельность возбудителя болезни или воздействуют на опухолевую клетку. Сальварсан оказался первой «магической пулей»: он убивал бледную спирохету – возбудитель сифилиса. И до появления антибиотиков только сальварсан и его производные помогали держать под контролем эту болезнь. В результате во всем мире началось массовое применение сальварсана – весьма эффективного и сравнительно безопасного препарата, несмотря на высокое содержание в нем мышьяка.

Химики, конечно, тоже заинтересовались этим соединением. До этого ни один медицинский препарат не был так тщательно исследован, как сальварсан. Вначале ему была приписана структура дигидрохлорида 3,3′-диамино-4,4′-дигидроксиарсенобензола с двойной связью:

Правильную формулу установил лишь в 1950-х отечественный химик М.Я.Крафт. Оказалось, что сальварсан имеет полимерное строение, в котором атомы мышьяка связаны друг с другом в цепочку:

Величина Х в зависимости от способа получения может колебаться от 8 до 40.

Как это бывает, не обошлось и без хулителей. Эрлих был даже вынужден судиться с самым злобным из них, и тот был приговорен к тюремному заключению. В то же время Эрлих получил признание, как в своей стране, так и за рубежом: Пруссия пожаловала ему титул «его превосходительства тайного советника», он был избран почетным доктором университетов в Оксфорде, Чикаго, Афинах, стал почетным гражданином Франкфурта-на-Майне, в котором находится институт его имени; в 1908 ему было присвоено звание Нобелевского лауреата по физиологии и медицине.

Успех Эрлиха инициировал синтез 32 000 мышьякорганических соединений с целью изучения их антибактериального действия. В результате на смену сальварсану пришли другие мышьяковистые препараты, более эффективные и менее токсичные. Некоторые из них в течение многих лет находили применение для лечения сифилиса, сонной болезни и родственных паразитарных заболеваний. Так, в нашей стране производные и аналоги сальварсана (новарсенол, миарсенол, осарсол, трипарсамид и др.) были исключены из Государственного реестра лекарственных средств лишь в 1998. Однако, именно с сальварсана, который использовался в течение нескольких десятилетий, началась современная эра химиотерапии. В настоящее время в медицинской практике используют, в основном, неорганические соединения мышьяка: мышьяковистый ангидрид As2O3, арсенит калия KAsO2, гидроарсенат натрия Na2HАsO47H2O. Эти вещества (в минимальных дозах) тормозят окислительные процессы в организме, усиливают кроветворение, их назначают внутрь в качестве общеукрепляющего и тонизирующего средства. Те же вещества – как наружное – назначают при некоторых кожных заболеваниях. Именно мышьяк и его соединения придают некоторым минеральным водам целебное действие. Высшая суточная доза таких препаратов – 15 мг. Мышьяковистая кислота входит в состав пасты, которую врач вводит на 1–2 дня в больной, чтобы «убить нерв»; после этого зуб можно безболезненно долечить.

Мышьяк давно и с успехом используется врачами для эффективного лечения некоторых форм лейкемии – ракового заболевания белых кровяных телец. Однако, длительное применение мышьяка нередко становилось результатом развития других форм раковых заболеваний, включая рак предстательной железы, легких, почек, желчного пузыря и носоглотки. Оказалось, что мышьяк препятствует дупликации гена, который, в свою очередь, подавляет активность одного из ключевых ферментов – теломеразы. В результате возникают различные генетические нарушения. Эти нарушения, с одной стороны становятся возможной причиной ракового перерождения здоровых клеток, а с другой – приводят к отмиранию клеток, уже пораженных раком. Дальнейшие изучения механизма воздействия мышьяка на клетки помогут разработать более совершенные методы лечения раковых заболеваний.

Ключевые слова: адамсит, арсин, криминалистика, люизит, отравляющие вещества, питьевая вода, противоядия, реакция Марша, сальварсан, токсикология, сифилис, Эрлих, яды.

Илья Леенсон

www.krugosvet.ru

Для чего мышьяк в зубе

Арсеникум или арсеник — такое название на латыни имеет мышьяк в химических таблицах. В русском языке слово мышьяк появилось после того, как оксид этого вещества использовали в борьбе против мышей и крыс. Мышьяк имеет вид очень мелких скорлупок с металлическим блеском или плотного образования из мелких зернышек. Одно из его неорганических соединений — мышьяковистый ангидрид — широко используется в медицинской, в частности стоматологической практике.

Для чего мышьяк в зубе?

Как и для чего стоматолог использует мышьяк

Содержание статьи

Это вещество применяется врачами для получения обезболивающего эффекта. Препарат с мышьяком убивает нерв больного зуба, конечно есть и другие средства для получения того же эффекта, но этот способ все еще продолжают использовать, поскольку он эффективен и проверен десятилетиями.

Под слоем эмали зуба и дентином (твердая ткань зуба), составляющая его основу, находится пульпа. Она состоит из множества нервных окончаний и кровеносных сосудов. При остром пульпите происходит воспаление и отек, который сдавливает нервные окончания, отсюда возникает сильная боль.

На заметку! Зубная эмаль самая прочная биологическая ткань, сверла бормашины поэтому изготовлены с использованием алмаза.

Мышьяк обеспечивает:

  • некротическое действие на все нервные окончания в зубе;
  • омертвление пульпы;
  • прекращение кровоснабжения;
  • прекращение импульсов от нервных окончаний.

В мышьяковистой пасте содержится анестетик, поэтому процесс воздействия мышьяка протекает безболезненно.

Процесс удаления нерва

Состав пасты может меняться в зависимости от производителя. Примерный состав препарата такой:

  • мышьяковистый ангидрид;
  • новокаин, лидокаин или другой анестетик;
  • антисептик типа камфоры;
  • танин, вязкое вещество, продлевающее действие мышьяка.

Если беспокоит сильная боль, то поверх пасты может дополнительно накладываться анестезирующее вещество.

Врач высверливает зуб, очищает его и вносит в полость зуба препарат. Затем закрывает временной пломбой, с которой пациент ходит в зависимости от указаний врача. Это может составлять от 1 до 5 дней.

На заметку! Попадание мышьяка из полости зуба в ротовую полость должно быть исключено, так как это может привести к остеомиелиту.

Закладывание мышьяка

Во время действия мышьяка нервы внутри зуба могут влиять на возникновение ноющей боли, длиться это может несколько часов, для обезболивания принимается бромистый препарат. Через положенное время врач вынет временную пломбу, удалит мышьяк, разрушенный нерв и запломбирует подготовленную полость зуба.

Влияние мышьяка

В тканях, где действует мышьяковистый ангидрид, может происходить нарушение нормального дыхания клеток. Даже небольшое количество препарата влияет на расширение сосудов и может приводить к кровоизлияниям. В нервных волокнах происходит разложение большинства составляющих. Такие изменения прямо пропорциональны дозировке вещества и сроку его воздействия. Препарат с мышьяком используют тогда, когда есть необходимость удаления нервов и пульпы.

На заметку! Абсолютно запрещено употребление алкоголя после закладки мышьяковистой пасты, так как ее воздействие усиливается и становится весьма вероятен риск интоксикации.

Что такое мышьяк

Показания и противопоказания

Вещество широко используют государственные поликлиники как эффективное и самое доступное средство для омертвления зубного нерва. Также препарат используется при:

  • невозможности выполнить другой вид анестезии;
  • необходимости экстренного умерщвления нерва;
  • аллергии на другие обезболивающие препараты;
  • неэффективности других обезболивающих;
  • наличии индивидуальных показаний;
  • в детской стоматологии только при сформированных корнях.

Мышьяковистую пасту не используют в случае:

  • детского возраста до полутора лет;
  • аллергической реакции на препарат;
  • беременности;
  • заболевания мочевыделительных органов;
  • угрозы глаукомы;
  • грудного вскармливания;
  • отсутствия возможности полной прочистки канала;
  • искривления зубного канала;
  • нарушения целостности корней зубов.

Применение мышьяка

На заметку! Следы некоторых металлов в организме, в том числе мышьяка могут играть роль в патогенезе глаукомы.

Если болит зуб с мышьяком

Если зубная боль продолжается более суток, то следует незамедлительно обратиться к стоматологу. Подобная реакция может возникать в следующих случаях:

  • аллергии на мышьяк или другие составляющие;
  • врач положил мышьяк на закрытую пульпу;
  • воспаления или некроза тканей вокруг зуба;
  • малой концентрации вещества;
  • наличии пародонтита;
  • нарушения в технологии наложения веществ;
  • высокой чувствительности, при которой боль может стихать через несколько дней.

При сильной боли, особенно ночью, лучше обратиться за помощью. При воспалении тканей вокруг зуба или некроза, вызванного мышьяком, могут возникнуть очень опасные состояния, влияющие на надкостницу или кости челюсти.

Зуб после удаления нерва

На заметку! В первый день после закладки мышьяка при боли можно выпить таблетку любого обезболивающего.

Если выпал мышьяк

Бывают ситуации, когда во время приема пищи временная пломба разрушается и мышьяк выпадает. Сразу после этого нужно прополоскать полость рта содовым раствором с добавления йода, это делается чтобы нейтрализовать возможные остатки обезболивающей пасты. Затем полость зуба необходимо закрыть ватным шариком и обратиться к стоматологу.

В других ситуациях мышьяк может быть случайно проглочен, но дозировка препарата такова, что она не вызовет негативных последствий в виде интоксикации. Чтобы не переживать по этому поводу можно выпить молока, или принять активированный уголь. Выпасть пломба с мышьяком может при несоблюдениях рекомендаций врача, к ним относятся:

  1. В течение двух часов после посещения врача не принимать пищу.
  2. Если появится на пломбе кислый вкус, прополоскать раствором соды.
  3. Стараться не жевать на стороне больного зуба или принимать мягкую пищу.
  4. Обязательно посетить врача в указанный срок для удаления мышьяка, временной пломбы и продолжения лечения.

На заметку! При превышении времени нахождения мышьяка в полости зуба возможно развитие некроза тканей вокруг зуба у пациентов с заболеваниями органов пищеварения и повышенной чувствительности к препарату возможно развитие интоксикации.

Видео — Специалист о мышьяке в зубе

Самостоятельное избавление от мышьяка

Самому избавиться от пасты можно, но нежелательно. Это следует делать только в крайних случаях, когда требуется помощь, но по каким-то причинам ее невозможно своевременно получить.

Если требуется удалить временную пломбу, это можно сделать с помощью иглы от шприца или любой другой. Мышьяк удаляется с ее же помощью, предварительно иглу нужно обработать спиртом. Полость рта после этого прополаскивать несколько раз в день раствором соды с несколькими каплями йода. Открытый зуб обязательно прикрыть кусочком ваты и как можно скорей обратиться к стоматологу.

Последствия при превышении дозы  мышьяка

Влияние мышьяка на организм

Если доза была превышена врачом или пациент передержал и не явился вовремя для удаления мышьяка, то возможно негативные последствия, самые распространенные из них:

  • отек пульпы;
  • потемнение твердой ткани зуба;
  • периодонтит;
  • остеонекроз;
  • общая интоксикация.

Учитывая все последствия, препараты на основе мышьяка не применяются в отношении беременных и кормящих женщин, также мышьяк практически не используется для лечения детских зубов.

На заметку! В случае лечения детей трудно рассчитать необходимую дозу мышьяковистой пасты, также ребенок может самостоятельно расковырять пломбу и проглотить мышьяк.

Сравнение мышьяковых и безмышьяковых паст

Пасты с мышьяком Особенности

Девит АРС

30% содержание мышьяковистого ангидрида. Используется при распространении кариозного процесса через тонкую ткань зуба, при инфицировании пульпы. Максимальный срок оставления пасты в зубе 3 суток

Каустинерв Арсеник

Максимальный срок оставления пасты в зубе 7 дней. Состоит помимо действующего вещества из лидокаина, камфоры, эфедрина, хлорфенола. Спортсменам пользоваться не рекомендуется, может показать положительную реакцию на антидопинговом контроле
Пасты на основе формальдегида Такие пасты в отличие от мышьяковистых могут мумифицировать пульпу, но все же считаются менее эффективными

Девит С

В составе параформальдегид, лидокаин, креозот. Время действия от 2 до 7 дней

Девит П

Содержит параформ, хлорфенол, ментол, камфору, лидокаин используется на молочных зубах, позволяет не удалять пульпу

Каустинерв Форт

В составе лидокаин, параформальдегид, фенол. Применяется от 7 до 10 дней

В стоматологической клинике врач будет использовать обезболивающее средство по индивидуальным показаниям и не поставит мышьяк без вашего согласия.

expertdent.net

Мышьяк. Описание, свойства, происхождение и применение полуметалла

 
Мышьяк — минерал из класса самородных элементов, полуметалл, химическая формула As. Обычны примеси Sb, S, Fe, Ag, Ni; реже Bi и V. Содержание As в самородном мышьяке достигает 98%. Химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) четвёртого периода периодической системы; имеет атомный номер 33. Мышьяк (неочищенный мышьяк) представляет собой твердое вещество, извлекаемое из природных арсенопиритов. Он существует в двух основных формах: обыкновенный, так называемый «металлический» мышьяк, в виде блестящих кристаллов стального цвета, хрупких, не растворимых в воде и желтый мышьяк, кристаллический, довольно неустойчивый. Мышьяк используется в производстве дисульфида мышьяка, крупной дроби, твердой бронзы и различных других сплавов (олова, меди и т.п.)
 

СТРУКТУРА


Кристаллическая структура мышьяка дитригонально-скаленоэдрическая симметрия. Сингония тригональная, в. с. L633L23PC. Кристаллы крайне редки, имеют ромбоэдрический или псевдокубический габитус.

Установлено несколько аллотропных модификаций мышьяка. В обычных условиях устойчив металлический, или серый мышьяк (альфа-мышьяк). Кристаллическая решетка серого мышьяка ромбоэдрическая, слоистая, с периодом а=4,123 А, угол а = 54° 10′. Плотность (при температуре 20° С) 5,72 г/см3; температурный коэфф. линейного расширения 3,36 • 10 град ; удельное электрическое сопротивление (температура 0° С) 35 • 10—6 ом • см; НВ = ж 147; коэфф. сжимаемости (при температуре 30° С) 4,5 х 10-6cm2/кг. Температура плавления альфа-мышьяка 816° С при давлении 36 атмосфер.

Под атм. давлением мышьяк возгоняется при температуре 615° С не плавясь. Теплота сублимации 102 кал/г. Пары мышьяка бесцветны, до т-ры 800° С состоят из молекул As4, от 800 до 1700° С — из смеси As4 и As2, выше температуры 1700° С — только из As2. При быстрой конденсации паров мышьяк на поверхности, охлаждаемой жидким воздухом, образуется желтый мышьяк— прозрачные мягкие кристаллы кубической системы с плотностью 1,97 г/см3. Известны также другие метастабильные модификации мышьяка: бета-мышьяк — аморфная стеклообразная, гамма-мышьяк — желто-коричневая и дельта-мышьяк — коричневая аморфная с плотностями соответственно 4,73; 4,97 и 5,10 г/см3. Выше температуры 270° С эти модификации переходят в серый мышьяк.

СВОЙСТВА


Цвет на свежем изломе цинково-белый, оловянно-белый до светло-серого, быстро тускнеет за счет образования тёмно-серой побежалости; чёрный на выветрелой поверхности. Твёрдость по шкале Мооса 3 — 3,5. Плотность 5,63 — 5,8 г/см3. Хрупкий. Диагностируется по характерному запаху чеснока при ударе. Спайность совершенная по {0001} и менее совершенная по {0112}. Излом зернистый. Уд. вес 5,63-5,78. Черта серая, оловянно-белая. Блеск металлический, сильный (в свежем изломе), быстро тускнеет и становится матовым на окислившейся, почерневшей с течением времени поверхности. Является диамагнетиком.

МОРФОЛОГИЯ


Мышьяк обычно наблюдается в виде корок с натечной почковидной поверхностью, сталактитов, скорлуповатых образований, в изломе обнаруживающих кристаллически-зернистое строение. Самородный мышьяк довольно легко узнается по форме выделений, почерневшей поверхности, значительному удельному весу, сильному металлическому блеску в свежем изломе и совершенной спайности. Под паяльной трубкой улетучивается, не плавясь (при температуре около 360°), издавая характерный чесночный запах и образуя белый налет As2О3 на угле. В жидкое состояние переходит лишь при повышенном внешнем давлении. В закрытой трубке образует зеркало мышьяка. При резком ударе молотком издает чесночный запах.

ПРОИСХОЖДЕНИЕ


Мышьяк встречается в гидротермальных месторождениях в виде метаколлоидных образований в пустотах, образуясь, очевидно, в последние моменты гидротермальной деятельности. В ассоциации с ним могут встречаться различные по составу мышьяковистые, сурьмянистые, реже сернистые соединения никеля, кобальта, серебра, свинца и др., а также нерудные минералы.

В литературе имеются указания на вторичное происхождение мышьяка в зонах выветривания месторождений мышьяковистых руд, что, вообще говоря, мало вероятно, если учесть, что в этих условиях он очень неустойчив и, быстро окисляясь, разлагается полностью. Черные корочки состоят из тонкой смеси мышьяка и арсенолита (As2О3). В конце концов образуется чистый арсенолит.

В земной коре концентрация мышьяка невелика и составляет 1,5 промилле. Он встречается в почве и минералах и может попасть в воздух, воду и грунт благодаря ветровой и водной эрозии. Кроме того, элемент поступает в атмосферу из других источников. В результате извержения вулканов в воздух выделяется около 3 тыс. т мышьяка в год, микроорганизмы образуют 20 тыс. т летучего метиларсина в год, а в результате сжигания ископаемого топлива за тот же период выделяется 80 тыс. т.

На территории СССР самородный мышьяк был встречен в нескольких месторождениях. Из них отметим Садонское гидротермальное свинцово-цинковое месторождение, где он неоднократно наблюдался в виде почковидных масс на кристаллическом кальците с галенитом и сфалеритом. Крупные почкообразные скопления самородного мышьяка с концентрически-скорлуповатым строением были встречены на левом берегу р. Чикоя (Забайкалье). В парагенезисе с ним наблюдался лишь кальцит в виде оторочек на стенках тонких жил, секущих древние кристаллические сланцы. В виде обломков (рис. 76) мышьяк был найден также в районе ст. Джалинда, Амурской ж. д. и в других местах.

В ряде месторождений Саксонии (Фрейберг, Шнееберг, Аннаберг и др.) самородный мышьяк наблюдался в ассоциации с мышьяковистыми соединениями кобальта, никеля, серебра, самородным висмутом и др. Все эти и другие находки этого минерала практического значения не имеют.

ПРИМЕНЕНИЕ


Мышьяк используется для легирования сплавов свинца, идущих на приготовление дроби, так как при отливке дроби башенным способом капли сплава мышьяка со свинцом приобретают строго сферическую форму, и кроме того, прочность и твёрдость свинца существенно возрастают. Мышьяк особой чистоты (99,9999 %) используется для синтеза ряда полезных и важных полупроводниковых материалов — арсенидов (например, арсенида галлия) и других полупроводниковых материалов с кристаллической решёткой типа цинковой обманки.

Сульфидные соединения мышьяка — аурипигмент и реальгар — используются в живописи в качестве красок и в кожевенной отрасли промышленности в качестве средств для удаления волос с кожи. В пиротехнике реальгар употребляется для получения «греческого», или «индийского», огня, возникающего при горении смеси реальгара с серой и селитрой (при горении образует ярко-белое пламя).
Некоторые элементоорганические соединения мышьяка являются боевыми отравляющими веществами, например, люизит.

В начале XX века некоторые производные какодила, например, сальварсан, применяли для лечения сифилиса, со временем эти препараты были вытеснены из медицинского применения для лечения сифилиса другими, менее токсичными и более эффективными, фармацевтическими препаратами, не содержащими мышьяк.

Многие из мышьяковых соединений в очень малых дозах применяются в качестве препаратов для борьбы с малокровием и рядом других тяжелых заболеваний, так как оказывают клинически заметное стимулирующее влияние на ряд специфических функций организма, в частности, на кроветворение. Из неорганических соединений мышьяка мышьяковистый ангидрид может применяться в медицине для приготовления пилюль и в зубоврачебной практике в виде пасты как некротизирующее лекарственное средство. Этот препарат в обиходе и жаргонно называли «мышьяк» и применяли в стоматологии для локального омертвления зубного нерва. В настоящее время препараты мышьяка редко применяются в зубоврачебной практике из-за их токсичности. Сейчас разработаны и применяются другие методы безболезненного омертвления нерва зуба под местной анестезией.


Мышьяк (англ. Arsenic) — As

Молекулярный вес 74.92 г/моль
Происхождение названия русское название от слова «мышь», в связи с употреблением его соединений для истребления мышей и крыс. Английское от греч. Arsenikon, изначально применялось к минералу аурипигменту
IMA статус действителен

КЛАССИФИКАЦИЯ


Strunz (8-ое издание) 1/B.01-10
Nickel-Strunz (10-ое издание) 1.CA.05
Dana (7-ое издание) 1.3.1.1
Dana (8-ое издание) 1.3.1.1
Hey’s CIM Ref. 1.33

ФИЗИЧЕСКИЕ СВОЙСТВА


Цвет минерала оловянно-белый, с поверхности переходящий в тёмно-серый или чёрный
Цвет черты серый
Прозрачность непрозрачный
Блеск полуметаллический, тусклый
Спайность совершенная по {0001} и менее совершенная по {0112}
Твердость (шкала Мооса) 3,5
Излом неравномерный
Прочность хрупкий
Плотность (измеренная) 5.63 — 5.78 г/см3
Радиоактивность (GRapi) 0

ОПТИЧЕСКИЕ СВОЙСТВА


Тип анизотропный
Оптическая анизотропия различимая — желтовато-коричневый и светло-серый переходящий в желтовато-серый
Оптический рельеф низкий
Плеохроизм слабый
Люминесценция в ультрафиолетовом излучении не флюоресцентный

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА


Точечная группа 3m (3 2/m) — Гексагональная-скаленоэдрическая
Пространственная группа R 3m
Сингония Тригональная
Параметры ячейки a = 3.768Å, c = 10.574Å
Двойникование Двойники редки, по {10_14}, также механические двойники давления по {01_12}

Интересные статьи:

mineralpro.ru  

01.12.2016  

mineralpro.ru

Мышьяк — это… Что такое Мышьяк?

Внешний вид простого вещества

Зеленоватый полуметалл
Свойства атома
Имя, символ, номер

Мышьяк / Arsenicum (As), 33

Атомная масса
(молярная масса)

74,92159 а. е. м. (г/моль)

Электронная конфигурация

[Ar] 3d10 4s2 4p3

Радиус атома

139 пм

Химические свойства
Ковалентный радиус

120 пм

Радиус иона

(+5e)46 (-3e)222 пм

Электроотрицательность

2,18 [1] (шкала Полинга)

Электродный потенциал

0

Степени окисления

5, 3, −3

Энергия ионизации
(первый электрон)

946,2(9,81) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

5,73 (серый мышьяк) г/см³

Температура кипения

876 K

Тройная точка

1090 К (817°C), 3700 кПа

Теплота испарения

32,4 кДж/моль

Молярная теплоёмкость

25,05[2] Дж/(K·моль)

Молярный объём

13,1 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

ромбоэдрическая

Параметры решётки

a=4,132; α=54,13 Å

Отношение c/a

2,805

Температура Дебая

285 K

Прочие характеристики
Теплопроводность

(300 K) (50,2) Вт/(м·К)

33

Мышьяк

3d104s24p3

Мышья́к — химический элемент 15-й группы (по устаревшей классификации — главной подгруппы пятой группы) четвёртого периода периодической системы; имеет атомный номер 33, обозначается символом As. Простое вещество представляет собой хрупкий полуметалл стального цвета. CAS-номер: 7440-38-2.

История

Происхождение названия

Название мышьяка в русском языке связывают с употреблением его соединений для истребления мышей и крыс. Греческое название ἀρσενικόν происходит от персидского زرنيخ (zarnik) — «жёлтый аурипигмент». Народная этимология возводит к др.-греч. ἀρσενικός — мужской[3].

В 1789 году А. Л. Лавуазье выделил металлический мышьяк из триоксида мышьяка («белого мышьяка»), обосновал, что это самостоятельное простое вещество, и присвоил элементу название «арсеникум».

Нахождение в природе

Мышьяк — рассеянный элемент. Содержание в земной коре 1,7·10−4% по массе. В морской воде 0,003 мг/л[4]. Это вещество может встречаться в самородном состоянии, имеет вид металлически блестящих серых скорлупок или плотных масс, состоящих из маленьких зернышек. Известно около 200 мышьяксодержащих минералов. В небольших концентрациях часто содержится в свинцовых, медных и серебряных рудах. Довольно часто встречаются два природных соединения мышьяка с серой: оранжево-красный прозрачный реальгар AsS и лимонно-жёлтый аурипигмент As2S3. Минерал, имеющий промышленное значение — арсенопирит (мышьяковый колчедан) FeAsS или FeS2•FeAs2 (46 % As), также добывают мышьяковистый колчедан — лёллингит (FeAs2) (72,8 % As), скородит FeAsO4 (27 — 36% As). Большая часть мышьяка добывается попутно при переработке мышьяксодержащих золотых, свинцово-цинковых, медноколчеданных и других руд.

Месторождения

Главный промышленный минерал мышьяка — арсенопирит FeAsS. Крупные медно-мышьяковые месторождения есть в Грузии, Средней Азии и Казахстане, в США, Швеции, Норвегии и Японии, мышьяково-кобальтовые — в Канаде, мышьяково-оловянные — в Боливии и Англии. Кроме того, известны золото-мышьяковые месторождения в США и Франции. Россия располагает многочисленными месторождениями мышьяка в Якутии, на Урале, в Сибири, Забайкалье и на Чукотке[5].

Получение

Открытие способа получения металлического мышьяка (серого мышьяка) приписывают средневековому алхимику Альберту Великому, жившему в XIII в. Однако гораздо ранее греческие и арабские алхимики умели получать мышьяк в свободном виде, нагревая «белый мышьяк» (триоксид мышьяка) с различными органическими веществами.

Существует множество способов получения мышьяка: сублимацией природного мышьяка, способом термического разложения мышьякового колчедана, восстановлением мышьяковистого ангидрида и др.

В настоящее время для получения металлического мышьяка чаще всего нагревают арсенопирит в муфельных печах без доступа воздуха. При этом освобождается мышьяк, пары которого конденсируются и превращаются в твердый мышьяк в железных трубках, идущих от печей, и в особых керамических приёмниках. Остаток в печах потом нагревают при доступе воздуха, и тогда мышьяк превращается в As2O3. Металлический мышьяк получается в довольно незначительных количествах, и главная часть мышьякосодержащих руд перерабатывается в белый мышьяк, то есть в триоксид мышьяка — мышьяковистый ангидрид As2О3.

Применение

Мышьяк используется для легирования сплавов свинца, идущих на приготовление дроби, так как при отливке дроби башенным способом капли сплава мышьяка со свинцом приобретают строго сферическую форму, и кроме того, прочность и твёрдость свинца возрастают.

Мышьяк особой чистоты (99,9999 %) используется для синтеза ряда ценных и важных полупроводниковых материалов — арсенидов и сложных алмазоподобных полупроводников.

Сульфидные соединения мышьяка — аурипигмент и реальгар — используются в живописи в качестве красок и в кожевенной отрасли промышленности в качестве средств для удаления волос с кожи.

В пиротехнике реальгар употребляется для получения «греческого», или «индийского», огня, возникающего при горении смеси реальгара с серой и селитрой (ярко-белое пламя).

Многие из мышьяковых соединений в очень малых дозах применяются в качестве лекарств для борьбы с малокровием и рядом тяжелых заболеваний, так как оказывают клинически значимое стимулирующее влияние на ряд функций организма, в частности, на кроветворение. Из неорганических соединений мышьяка мышьяковистый ангидрид может применяться в медицине для приготовления пилюль и в зубоврачебной практике в виде пасты как некротизирующее лекарственное средство. Этот препарат называли «мышьяк» и применялся в стоматологии для девитализации пульпы зуба (см. пульпит). В настоящее время препараты мышьяка применяются в зубоврачебной практике редко из-за токсичности. Разработаны и применяются другие методы безболезненной денервации зуба под местной анестезией.

Биологическая роль и физиологическое действие

Мышьяк и все его соединения ядовиты. При остром отравлении мышьяком наблюдаются рвота, боли в животе, понос, угнетение центральной нервной системы. Сходство симптомов отравления мышьяком с симптомами холеры длительное время позволяло маскировать использование соединений мышьяка (чаще всего, триоксида мышьяка) в качестве смертельного яда. Во Франции порошок триоксида мышьяка за высокую «эффективность» получил обиходное название «наследственный порошок» (фр. poudre de succession). Существует предположение, что соединениями мышьяка был отравлен Наполеон на острове Святой Елены. В 1832 году появилась надёжная качественная реакция на мышьяк — проба Марша, значительно повысившая эффективность диагностирования отравлений.

На территориях, где в почве и воде избыток мышьяка, он накапливается в щитовидной железе у людей и вызывает эндемический зоб.

Помощь и противоядия при отравлении мышьяком: приём водных растворов тиосульфата натрия Na2S2O3, промывание желудка, приём молока и творога; специфическое противоядие — унитиол. ПДК в воздухе для мышьяка 0,5мг/м³.

Работают с мышьяком в герметичных боксах, используя защитную спецодежду. Из-за высокой токсичности соединения мышьяка использовались как отравляющие вещества в Первую мировую войну.

В западных странах мышьяк был известен преимущественно как сильный яд, в то же время в традиционной китайской медицине он почти на протяжении двух тысяч лет использовался для лечения сифилиса и псориаза. Теперь медики доказали, что мышьяк оказывает положительный эффект и в борьбе с лейкемией. Китайские ученые обнаружили, что мышьяк атакует белки, которые отвечают за рост раковых клеток.

Мышьяк в малых дозах канцерогенен, его использование в качестве лекарства, «улучшающего кровь» (так называемый «белый мышьяк», например «Таблетки Бло с мышьяком», и др.) продолжалось до середины 1950-х гг., и внесло свой весомый вклад в развитие онкологических заболеваний.

Недавно широкую огласку получила техногенная экологическая катастрофа на юге Индии — из-за чрезмерного отбора воды из водоносных горизонтов мышьяк стал поступать в питьевую воду. Это вызвало токсическое и онкологическое поражение у десятков тысяч людей.

Считалось, что «микродозы мышьяка, вводимые с осторожностью в растущий организм, способствуют росту костей человека и животных в длину и толщину, в отдельных случаях рост костей может быть вызван микродозами мышьяка в период окончания роста»[6].

Считалось также, что «При длительном потреблении небольших доз мышьяка у организма вырабатывается иммунитет: Этот факт установлен как для людей, так и для животных. Известны случаи, когда привычные потребители мышьяка принимали сразу дозы, в несколько раз превышающие смертельную, и оставались здоровыми. Опыты на животных показали своеобразие этой привычки. Оказалось, что животное, привыкшее к мышьяку при его употреблении, быстро погибает, если значительно меньшая доза вводится в кровь или под кожу.» Однако такое «привыкание» носит очень ограниченный характер, в отношении т. н. «острой токсичности», и не защищает от новообразований. Тем не менее, в настоящее время исследуется влияние микродоз мышьяксодержащих препаратов в качестве противоракового средства.

Возможно, в некоторых живых организмах мышьяк является необходимым элементом, занимая место фосфора в биохимических реакциях[7][8][9]. В 2010 году сообщалось об открытии бактерии GFAJ-1, в состав ДНК которой вместо фосфора входит мышьяк, в калифорнийском озере Моно [10][11][12]. Достоверность этого открытия оспаривается[13].

Соли мышьяка применялись в прошлом в ветеринарии, в качестве противогельминтозного средства[источник не указан 32 дня].

Загрязнения мышьяком

На территории Российской Федерации в г. Скопин Рязанской области вследствие многолетней работы местного металлургического комбината СМК «Металлург» в могильниках предприятия было захоронено около полутора тысяч тонн пылеобразных отходов с высоким содержанием мышьяка. С учётом того, что пяти миллиграммов мышьяка достаточно, чтобы отравить человека, в могильниках находится более 200 миллиардов смертельных доз мышьяка[14].

Известно также о загрязнении отходами военного производства, содержащими мышьяк, в городе Свирск на берегу Братского водохранилища[15][16].

Примечания

Ссылки

dic.academic.ru

Что такое мышьяк? Характеристика, свойства и применение

Мышьяк – химический элемент группы азота (группа 15 таблицы Менделеева). Это серое с металлическим блеском хрупкое вещество (α-мышьяк) с ромбоэдрической кристаллической решеткой. При нагревании до 600°C As сублимирует. При охлаждении паров возникает новая модификация — желтый мышьяк. Выше 270°C все формы As переходят в черный мышьяк.

История открытия

О том, что такое мышьяк, было известно задолго до признания его химическим элементом. В IV в. до н. э. Аристотель упоминал о веществе под названием «сандарак», которое, как теперь полагают, было реальгаром, или сульфидом мышьяка. А в I веке н. э. писатели Плиний старший и Педаний Диоскорид описывали аурипигмент – краситель As2S3. В XI в. н. э. различались три разновидности «мышьяка»: белый (As4O6), желтый (As2S3) и красный (As4S4). Сам элемент, вероятно, впервые был выделен в XIII веке Альбертом Великим, который отметил появление металлоподобного вещества, когда арсеникум, другое название As2S3, был нагрет с мылом. Но уверенности в том, что этот ученый-естествоиспытатель получил чистый мышьяк, нет. Первое подлинное свидетельство о выделении чистого химического элемента датировано 1649 годом. Немецкий фармацевт Иоганн Шредер приготовил мышьяк, нагревая его оксид в присутствии угля. Позже Никола Лемери, французский врач и химик, наблюдал образование этого химического элемента при нагревании смеси его оксида, мыла и поташа. К началу XVIII века мышьяк уже был известен и как уникальный полуметалл.

Распространенность

В земной коре концентрация мышьяка невелика и составляет 1,5 промилле. Он встречается в почве и минералах и может попасть в воздух, воду и грунт благодаря ветровой и водной эрозии. Кроме того, элемент поступает в атмосферу из других источников. В результате извержения вулканов в воздух выделяется около 3 тыс. т мышьяка в год, микроорганизмы образуют 20 тыс. т летучего метиларсина в год, а в результате сжигания ископаемого топлива за тот же период выделяется 80 тыс. т.

Несмотря на то что As — смертельный яд, он является важной составляющей питания некоторых животных и, возможно, человека, хотя необходимая доза не превышает 0,01 мг/сутки.

Мышьяк крайне трудно перевести в водорастворимое или летучее состояние. Тот факт, что он довольно мобилен, означает, что большие концентрации вещества в каком-то одном месте появиться не могут. С одной стороны, это хорошо, но с другой — легкость, с которой он распространяется, является причиной того, что загрязнение мышьяком становится все большей проблемой. Из-за деятельности человека, в основном за счет добычи и плавки, обычно немобильный химический элемент мигрирует, и сейчас его можно найти не только в местах его естественной концентрации.

Количество мышьяка в земной коре составляет около 5 г на тонну. В космосе его концентрация оценивается как 4 атома на миллион атомов кремния. Этот элемент широко распространен. Небольшое его количество присутствует в самородном состоянии. Как правило, образования мышьяка чистотой 90–98% встречаются вместе с такими металлами, как сурьма и серебро. Большая его часть, однако, входит в состав более чем 150 различных минералов – сульфидов, арсенидов, сульфоарсенидов и арсенитов. Арсенопирит FeAsS является одним из самых распространенных As-содержащих минералов. Другие распространенные соединения мышьяка – минералы реальгар As4S4, аурипигмент As2S3, леллингит FeAs2 и энаргит Cu3AsS4. Также часто встречается оксид мышьяка. Большая часть этого вещества является побочным продуктом выплавки медных, свинцовых, кобальтовых и золотых руд.

В природе существует только один стабильный изотоп мышьяка – 75As. Среди искусственных радиоактивных изотопов выделяется 76As c периодом полураспада 26,4 ч. Мышьяк-72, -74 и -76 используются в медицинской диагностике.

Промышленное производство и применение

Металлический мышьяк получают при нагреве арсенопирита до 650-700 °C без доступа воздуха. Если же арсенопирит и другие металлические руды нагревать с кислородом, то As легко вступает с ним в соединение, образуя легко возгоняемый As4O6, также известный как «белый мышьяк». Пары оксида собирают и конденсируют, и позже очищают повторной возгонкой. Большая часть As производится путем его восстановления углеродом из белого мышьяка, полученного таким образом.

Мировое потребление металлического мышьяка является относительно небольшим – всего несколько сотен тонн в год. Большая часть того, что потребляется, поступает из Швеции. Он используется в металлургии из-за его металлоидных свойств. Около 1% мышьяка применяется в производстве свинцовой дроби, так как он улучшает округлость расплавленной капли. Свойства подшипниковых сплавов на основе свинца улучшаются как по тепловым, так и по механическим характеристикам, когда они содержат около 3% мышьяка. Наличие малого количества этого химического элемента в свинцовых сплавах закаляет их для использования в аккумуляторных батареях и кабельной броне. Небольшие примеси мышьяка повышают коррозионную стойкость и тепловые свойства меди и латуни. В чистом виде химический элементарный As используется для нанесения бронзового покрытия и в пиротехнике. Высокоочищенный мышьяк находит применение в полупроводниковой технике, где он используется с кремнием и германием, а также в форме арсенида галлия (GaAs) в диодах, лазерах и транзисторах.

Соединения As

Так как валентность мышьяка равна 3 и 5, и он имеет ряд степеней окисления от -3 до +5, элемент может образовывать различные виды соединений. Наиболее важное коммерческое значение имеют его оксиды, основными формами которых являются As4O6 и As2O5. Мышьяковистый оксид, широко известный как белый мышьяк, – это побочный продукт обжига руд меди, свинца и некоторых других металлов, а также арсенопирита и сульфидных руд. Он является исходным материалом для большинства других соединений. Кроме того, он используется в пестицидах, служит обесцвечивающим веществом в производстве стекла и консервантом для кож. Пятиокись мышьяка образуется при воздействии окислителя (например, азотной кислоты) на белый мышьяк. Он является основным ингредиентом инсектицидов, гербицидов и клея для металла.

Арсин (AsH3), бесцветный ядовитый газ, состоящий из мышьяка и водорода, – это еще одно известное вещество. Вещество, называемое также мышьяковистым водородом, получают путем гидролиза металлических арсенидов и восстановления металлов из соединений мышьяка в растворах кислот. Он нашел применение как легирующая добавка в полупроводниках и боевой отравляющий газ. В сельском хозяйстве большое значение имеют мышьяковая кислота (H3AsO4), арсенат свинца (PbHAsO4) и арсената кальция [Са3(AsO4)2], которые используются для стерилизации почвы и борьбы с вредителями.

Мышьяк – химический элемент, образующий множество органических соединений. Какодин (СН3)2As−As(СН3)2, например, используется при подготовке широко используемого десиканта (осушающего средства) – какодиловой кислоты. Сложные органические соединения элемента применяются в лечении некоторых заболеваний, например, амебной дизентерии, вызванной микроорганизмами.

Физические свойства

Что такое мышьяк с точки зрения его физических свойств? В наиболее стабильном состоянии он представляет собой хрупкое твердое вещество стального серого цвета с низкой тепловой и электрической проводимостью. Хотя некоторые формы As являются металлоподобными, отнесение его к неметаллам – это более точная характеристика мышьяка. Есть и другие виды мышьяка, но они не очень хорошо изучены, особенно желтая метастабильная форма, состоящая из молекул As4, подобно белому фосфору Р4. Мышьяк возгоняется при температуре 613 °C, и в виде пара он существует как молекулы As4, которые не диссоциируют до температуры около 800 °C. Полная диссоциация на молекулы As2 происходит при 1700 °С.

Строение атома и способность образовывать связи

Электронная формула мышьяка — 1s22s22p63s23p63d104s24p3 — напоминает азот и фосфор в том, что во внешней оболочке есть пять электронов, но он отличается от них наличием 18 электронов в предпоследней оболочке вместо двух или восьми. Добавление 10 положительных зарядов в ядре во время заполнения пяти 3d-орбиталей часто вызывает общее уменьшение электронного облака и увеличение электроотрицательности элементов. Мышьяк в таблице Менделеева можно сравнить с другими группами, которые наглядно демонстрируют эту закономерность. Например, общепризнанно, что цинк является более электроотрицательным, чем магний, а галлий – чем алюминий. Однако в последующих группах эта разница уменьшается, и многие не согласны с тем, что германий электроотрицательнее кремния, несмотря на обилие химических доказательств. Подобный переход от 8- к 18-элементной оболочке от фосфора к мышьяку может увеличить электроотрицательность, но это остается спорным.

Сходство внешней оболочки As и P говорит о том, они могут образовывать 3 ковалентные связи на атом при наличии дополнительной несвязанной электронной пары. Степень окисления должна, следовательно, быть +3 или -3, в зависимости от относительной взаимной электроотрицательности. Строение мышьяка также говорит о возможности использования внешней d-орбитали для расширения октета, что позволяет элементу образовывать 5 связей. Она реализуется только при реакции с фтором. Наличие свободной электронной пары для образования комплексных соединений (через донорство электронов) в атоме As проявляется гораздо меньше, чем у фосфора и азота.

Мышьяк стабилен в сухом воздухе, но во влажном покрывается черным оксидом. Его пары легко сгорают, образуя As2O3. Что такое мышьяк в свободном состоянии? Он практически не подвержен воздействию воды, щелочей и неокисляющих кислот, но окисляется азотной кислотой до состояния +5. С мышьяком реагируют галогены, сера, а многие металлы образуют арсениды.

Аналитическая химия

Вещество мышьяк качественно можно обнаружить в виде желтого аурипигмента, выпадающего в осадок под действием 25% раствора соляной кислоты. Следы As, как правило, определяются путем его преобразования в арсин, который можно обнаружить с помощью теста Марша. Арсин термически разлагается, образуя черное зеркало из мышьяка внутри узкой трубки. По методу Гутцайта пробник, пропитанный хлоридом ртути, под действием арсина темнеет из-за выделения ртути.

Токсикологическая характеристика мышьяка

Токсичность элемента и его производных широко изменяется в значительных пределах, от чрезвычайно ядовитого арсина и его органических производных до просто As, который относительно инертен. О том, что такое мышьяк, говорит применение его органических соединений в качестве боевых отравляющих веществ (люизит), везиканта и дефолианта («Агент блю» на основе водной смеси 5% какодиловой кислоты 26% ее натриевой соли).

В целом производные данного химического элемента раздражают кожу и вызывают дерматит. Также рекомендуется защита от вдыхания мышьяк-содержащей пыли, но большая часть отравлений происходит при его употреблении внутрь. Предельно допустимая концентрация As в пыли за восьмичасовой рабочий день составляет 0,5 мг/м3. Для арсина доза снижается до 0,05 части на миллион. Помимо использования соединений данного химического элемента в качестве гербицидов и пестицидов, применение мышьяка в фармакологии позволило получить сальварсан – первый успешный препарат против сифилиса.

Воздействие на здоровье

Мышьяк является одним из наиболее токсичных элементов. Неорганические соединения данного химического вещества в естественных условиях встречаются в небольших количествах. Люди могут подвергаться воздействию мышьяка через пищу, воду и воздух. Экспозиция может также произойти при контакте кожи с зараженной почвой или водой.

Содержание мышьяка в продуктах питания довольно низкое. Однако его уровни в рыбе и морепродуктах могут быть очень высокими, так как они поглощают данный химический элемент из воды, в которой живут. Значительное количество неорганического мышьяка в рыбе может представлять опасность для здоровья человека.

Воздействию вещества также подвержены люди, которые с ним работают, живут в домах, построенных из обработанной им древесины, и на землях сельскохозяйственного назначения, где в прошлом применялись пестициды.

Неорганический мышьяк может вызывать различные последствия для здоровья человека, такие как раздражение желудка и кишечника, снижение производства красных и белых клеток крови, изменение кожи и раздражение легких. Предполагается, что поглощение значительного количества этого вещества может увеличить шансы развития рака, особенно рака кожи, легких, печени и лимфатической системы.

Очень высокие концентрации неорганического мышьяка являются причиной бесплодия и выкидышей у женщин, дерматитов, снижения сопротивляемости организма инфекциям, проблем с сердцем и повреждений мозга. Кроме того, этот химический элемент способен повредить ДНК.

Смертельная доза белого мышьяка равна 100 мг.

Органические соединения элемента ни рака, ни повреждений генетического кода не вызывают, но высокие дозы могут нанести вред здоровью человека, например вызвать нервные расстройства или боли в животе.

Свойства As

Основные химико-физические свойства мышьяка следующие:

  • Атомное число – 33.
  • Атомный вес – 74,9216.
  • Температура плавления серой формы – 814 °C при давлении 36 атмосфер.
  • Плотность серой формы – 5,73 г/см3при 14 °C.
  • Плотность желтой формы – 2,03 г/см3 при 18 °C.
  • Электронная формула мышьяка – 1s22s22p63s23p63d104s24p3.
  • Состояния окисления – -3, +3, +5.
  • Валентность мышьяка – 3, 5.

fb.ru

мышьяк — это… Что такое мышьяк?

МЫШЬЯ́К -а́; м.

1. Химический элемент (Аs) — твёрдое ядовитое вещество блестяще-серого цвета, входящее в состав многих минералов. Окисел мышьяка. Получение мышьяка.

2. Лекарственный препарат, содержащий это вещество или его соединения (применяется как общеукрепляющее, противомикробное и т.п. средство). Лечение мышьяком. Воздействие мышьяка на нервные окончания.

Мышьяко́вый, -ая, -ое. М-ые соединения. М-ая кислота. М. препарат. М-ое отравление. Мышья́чный, -ая, -ое. Устар. Мышьяко́вистый, -ая, -ое. Русское название этого элемента произошло от слова «мышь», т.к. мышьяк широко применялся при уничтожении крыс и мышей.

МЫШЬЯ́К (лат.

Arsenicum, от греческого arsen — сильный), As (читается «арсеникум»), химический элемент c атомным номером 33, атомная масса 74,9216. В природе встречается один стабильный изотоп 75As. Расположен в VА группе в 4 периоде периодической системы элементов. Электронная конфигурация внешнего слоя 4s2p3. Степени окисления +3, +5, –3 (валентности III, V).

Радиус атома 0,148 нм. Радиус иона Аs3- 0,191 нм, иона As3+ 0,072 нм (координационное число 4), иона As5+0,047 нм (6). Энергии последовательной ионизации 9,82, 18,62, 28,35, 50,1 и 62,6 эВ. электроотрицательность по Полингу (см. ПОЛИНГ Лайнус) 2,1. Неметалл.

Историческая справка
Мышьяк известен человечеству с древнейших времен, когда использовались в качестве красителей минералы аурипигмент (см. АУРИПИГМЕНТ) As2S3и реальгар (см. РЕАЛЬГАР)As 4S 4(упоминания о них встречаются у Аристотеля) (см. АРИСТОТЕЛЬ).

Алхимики при прокаливании сульфидов мышьяка на воздухе отмечали, что образование так называемого белого оксида As 2O3:

2As 2S3+9О2=2As2O3+6SO2
Этот оксид — сильный яд, он растворяется в воде и в вине.

Впервые As в свободном виде получил немецкий алхимик А. фон Больдштндт в 13 веке прогреванием оксида мышьяка с углем:

As2O3 +3С=2As+3СО

Для изображения мышьяка использовали знак извивающейся змеи с раскрытой пастью.

Нахождение в природе
Мышьяк — рассеянный элемент. Содержание в земной коре 1,7·10–4% по массе. Известно 160 мышьяксодержащих минералов. В самородном состоянии встречается редко. Минерал, имеющий промышленное значение — арсенопирит (см. АРСЕНОПИРИТ) FeAsS. As часто содержится в свинцовых, медных и серебряных рудах.

Получение
Обогащенную руду подвергают окислительному обжигу, затем сублимируют летучий As2O3.. Этот оксид восстанавливают углеродом. Для очистки As его подвергают дистилляции в вакууме, затем переводят в летучий хлорид AsCl3, который восстанавливают водородом (см. ВОДОРОД). Получаемый мышьяк содержит 10-5-10-6% примесей по массе.

Физические и химические свойства
Мышьяк — серое с металлическим блеском хрупкое вещество (a-мышьяк) с ромбоэдрической кристаллической решеткой, a = 0,4135 нм и a = 54,13°. Плотность 5,74 кг/дм3.

При нагревании до 600°C As сублимирует. При охлаждении паров возникает новая модификация — желтый мышьяк. Выше 270°C все формы As переходят в черный мышьяк.

Расплавить As можно только в запаянных ампулах под давлением. Температура плавления 817°C при давлении его насыщенных паров 3,6МПа.

Структура серого мышьяка похожа на структуру серой сурьмы и по строению напоминает черный фосфор.

Мышьяк химически активен. При хранении на воздухе порошкообразный As воспламеняется с образованием кислотного оксида As2O3. Этот оксид в парах существует в виде димеров As4O6.

При осторожном обезвоживании мышьяковой кислоты H3AsO4 получают высший кислотный оксид мышьяка As2O5, который при нагревании легко отдает кислород (см. КИСЛОРОД), превращаясь в As2O3.

Оксиду As2O3 отвечают существующие только в растворах ортомышьяковистая H3AsO3 и метамышьяковистая слабые кислоты HAsO2. Их соли — арсенаты.

Разбавленная азотная кислота (см. АЗОТНАЯ КИСЛОТА) окисляет As до H3AsO3, концентрированная азотная кислота — до H3AsO4. Со щелочами As не реагирует, в воде растворяется.

При нагревании As и H2образуется газ арсин (см. МЫШЬЯКА ГИДРИД) AsH3. С фтором (см. ФТОР) и хлором (см. ХЛОР) As взаимодействует с самовоспламенением. При взаимодействии As с серой (см. СЕРА), селеном (см. СЕЛЕН) и теллуром (см. ТЕЛЛУР) образуются хальгкогениды: (см. ХАЛЬКОГЕНИДЫ) As2S5, As2S3, As4S4, As2Se3, As2Te3, существующие в стеклообразном состоянии. Они являются полупроводниками.

Со многими металлами As образует арсениды (см. АРСЕНИДЫ). Арсенид галлия GaAs и индия InAs — полупроводники (см. ПОЛУПРОВОДНИКИ).

Известно большое число органических соединений мышьяка, в которых имеется химическая связь As — C: органоарсины RnAsH3-n (n = 1,3), тетраорганодиарсины R2As — AsR2 и другие.

Применение
As особой чистоты используется для синтеза полупроводниковых материалов. Иногда As добавляют к сталям как легирующую добавку.

В 1909 немецкий микробиолог П. Эрлих (см. ЭРЛИХ Пауль) получил «препарат 606», эффективное лекарство от малярии, сифилиса, возвратного тифа.

Физиологическое действие
Мышьяк и все его соединения ядовиты. При остром отравлении мышьяком наблюдаются рвота, боли в животе, понос, угнетение центральной нервной системы. Помощь и противоядия при отравлении мышьяком: прием водных растворов Na2S2O3. Промывание желудка, прием молока и творога; специфическое противоядие — унитиол. ПДК в воздухе для мышьяка 0,5мг/м3. Работают с мышьяком в герметичных боксах, используя защитную спецодежду. Из-за высокой токсичности соединения мышьяка использовались Германией как отравляющие вещества в Первую мировую войну.

На территориях, где в почве и воде избыток мышьяка, он накапливается в щитовидной железе у людей и вызывает эндемический зоб.

dic.academic.ru

МЫШЬЯК — это… Что такое МЫШЬЯК?


 


МЫШЬЯК


см. ТЯЖЕЛЫЕ МЕТАЛЛЫ

МЫШЬЯК
(As). Поскольку мышьяк и его соединения широко применяются в народном хозяйстве,
он содержится в сточных водах различных отраслей промышленности — металлургической,
химико-фармацевтической,
текстильной,
стекольной,
кожевенной,
химической по производству инсектицидов,
гербицидов,
красок. Мышьяковистые ядохимикаты,
используемые в сельском и лесном хозяйстве для борьбы с вредителями растений,
могут поступить в водоемы с поверхностным стоком. В воде мышьяк обнаруживается в форме арсената или арсенита,
а также встречаются метиллированные соединения.


Осажденные его формы при повышении температуры могут растворяться и вызывать вторичное загрязнение.

Токсичность. В больших концентрациях соединения мышьяка действуют прижигающе на жабры и кожу рыб. Проникая внутрь организма,
мышьяк связывается с SH-группами ферментов и вызывает сосудистые нарушения и деструктивные изменения во внутренних органах. Соли мышьяковистой кислоты (арсениты) резорбируются в тело рыб быстрее,
чем арсенаты,
и более токсичны. Смертельные концентрации мышьяковистого ангидрида для форели и окуня 15 — 19 мг As/л,
карася и карпа — 19 — 25,
дафний — 0,5,
циклопов — 1 — 5 мг As/л. По данным М. Е. Thummann,
концентрация мышьяка в воде 1,1 — 2,2 мг As/л вызывает гибель судака и плотвы через 2 — 3 сут,
3,1 мг As/л — карпа и угря через 4 — 6 сут.

Содержание мышьяка в теле рыб,
отравленных неорганическими или органическими соединениями,
по данным разных авторов,
составляет от 0,9 до 1340 мг/кг. При остром отравлении мышьяк концентрируется в жабрах и внутренних органах,
а при хроническом,
кроме того,
в костях,
чешуе и головном мозге.

Симптомы и патоморфологические изменения. Поскольку мышьяк является медленно действующим ядом,
картина острого отравления рыб нехарактерна. Рыбы угнетены,
малоподвижны,
перед смертью наступает сильное возбуждение и судороги. При хроническом отравлении наступает истощение и анемия. Патоморфологические изменения характеризуются дистрофией респираторного эпителия,
водяночно-жировой дистрофией и некробиозом печеночных клеток и эпителия канальцев почек.

Диагноз ставят по результатам определения мышьяка в воде и рыбе. Для установления мышьяка в воде рекомендуются колориметрический метод с диэтилдитиокарбаматом серебра,
а в органах рыб — качественные методы Марша или Зингер-Блека и количественное определение фотоэлектроколориметрическим методом. Содержание мышьяка в морских рыбах может достигать 5 мг/кг сырой массы. Мышьяк хорошо сохраняется в биологическом материале и может быть обнаружен в трупах через длительное время после смерти.

Профилактика основывается на предотвращении попадания мышьяка в водоемы со сточными водами промышленных и сельскохозяйственных предприятий,
а также в соблюдении правил применения его соединений в качестве пестицидов и антипаразитарных средств в ихтиопатологии.

Рыбохозяйственная ЦДК мышьяка в пресных водоемах 0,05 мг/л,
морских — 0,01 мг/л,
допустимые остаточные количества в рыбных продуктах — 1 мг/кг.


Болезни рыб: Справочник. — М..
Г. В. Васильков, Л. И. Грищенко, В. Г. Енгашев и др.; Под ред. В. С. Осетрова..
1989.

fish_diseases.academic.ru